Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 14 (1979), S. 1710-1714 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A modification of the numerical techniques of solution of Cauchy-type singular integral equations and determination of stress intensity factors at crack tips in plane elastic media is proposed. This technique presents some advantages under appropriate geometry conditions.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 15 (1980), S. 629-634 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 14 (1979), S. 949-959 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A modification of the collocation method for the numerical solution of Cauchy-type singular integral equations appearing in plane elasticity and, especially, crack problems is proposed. This modification, based on a variable transformation, applies to the case when the unknown function of the singular integral equation behaves like A(x - c)α + B(x - c)β, where α 〈 0, 0 〈 β - α 〈 1, near an endpoint c of the integration interval. In plane elasticity such a point is either a crack tip or a corner point of the boundary of the elastic medium. Thus the method seems to be quite efficient for the numerical evaluation of generalized stress intensity factors near such points. A successful application of the method to the classical plane elasticity problem of an antiplane shear crack terminating at a bimaterial interface was also made.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 20 (1984), S. 2065-2075 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A method which combines the finite element technique and the singular-integral equation method is presented. The association of the two methods is obtained with the help of Schwarz's alternating method (SAM). The method was applied with satisfactory results to the solution of a series of problems of a circular arc crack lying inside a finite thin plate for various lengths of the circular arc and for various dimensions of the rectangular cracked sheet.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 19 (1983), S. 421-430 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A new technique for the solution of singular integral equations is proposed, where the unknown function may have a particular singular behaviour, different from the one defined by the dominant part of the singular integral equation. In this case the integral equation may be discretized by two different quadratures defined in such a way that the collocation points of the one correspond to the integration points of the other. In this manner the system is reduced to a n × n system of discrete equations and the method preserves, for the same number of equations, the same polynomial accuracy. The main advantage of the method is that it can proceed without using special collocation points. This new technique was tested in a series of typical examples and yielded results which are in good agreement with already existing solutions.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 35 (1992), S. 1697-1708 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The scope of the present paper is the study of cracks having a given geometry by taking into account unilateral contact and friction phenomena between the two sides of the crack. The arising problem is highly non-classical because of the inequality relations describing the unilateral contact and friction interface conditions. The indirect BIEM is extended appropriately in order to treat this problem. Numerical examples concerning the calculation of stress intensity factors under the unilateral contact and friction interface conditions illustrate the developed method.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 36 (1993), S. 1597-1604 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The paper considers the fractal nature of cracks by assuming the fractal as the fixed point of a given transformation. This concept enables the study of a sequence of classical-geometry crack problems whose limit gives the solution of the fractal-geometry crack problem. The method is illustrated by a numerical example. It was shown that the fractal nature of the cracks influences the value of the stress intensity factors.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 19 (1983), S. 17-26 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A simple two-step corrective technique is presented in this paper for evaluating stress intensity factors in crack problems. In the first step an approximate evaluation of the stress intensity factor was made by considering the cracked plate to be of infinite size. The stresses of the problem were relaxed by the stresses of the infinite body which corresponds to the approximate value of the stress intensity factor. The expected discrepancy in the value of SIF by the infinite plate approximation was corrected in the second step where the existing residual stresses are equilibrated at the cracked plate by using any of the conventional finite element techniques and the corrective value of the stress intensity factor is calculated by using an appropriate collocation formula. The method was applied to three typical plane problems of cracked plates with satisfactory results.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...