Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 271-289 
    ISSN: 0271-2091
    Keywords: Least-squares finite element method ; Time-dependent ; Incompressible flows ; Bqussinesq approximation ; Navier-Stokes equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The time-dependent Navier-Stokes equations and the energy balance equation for an incompressible, constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method based on a velocity-pressure-vorticity-temperature-heat-flux (u-P-ω-T-q) formulation discretized by backward finite differencing in time. The discretization scheme leads to the minimization of the residual in the l2-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to 106, lid-driven cavity flow at Reynolds numbers up to 104 and flow over a square obstacle at Reynolds number 200, are presented to validate the method.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 413-432 
    ISSN: 0271-2091
    Keywords: least-squares finite element method ; Jacobi conjugate gradient method ; three-dimensional flows ; time-accurate solutions ; lid-driven flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A time-accurate least-squares finite element method is used to simulate three-dimensional flows in a cubic cavity with a uniform moving top. The time- accurate solutions are obtained by the Crank-Nicolson method for time integration and Newton linearization for the convective terms with extensive linearization steps. A matrix-free algorithm of the Jacobi conjugate gradient method is used to solve the symmetric, positive definite linear system of equations. To show that the least-squares finite element method with the Jacobi conjugate gradient technique has promising potential to provide implicit, fully coupled and time-accurate solutions to large-scale three-dimensional fluid flows, we present results for three-dimensional lid-driven flows in a cubic cavity for Reynolds numbers up to 3200.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 39 (1996), S. 3049-3064 
    ISSN: 0029-5981
    Keywords: mold cooling ; injection molding ; finite element method ; three-dimensional ; Jacobi conjugate gradient ; matrix-free algorithm ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A methodology is presented to simulate the three-dimensional heat transfer within a mold during the injection molding process. The mold cooling analysis assists cooling channel design and paves the way for part shrinkage and warpage analysis. The transient temperature distributions in the mold and the polymer part are simultaneously computed by Galerkin Finite Element Method (GFEM) using a matrix-free Jacobi Conjugate Gradient (JCG) scheme. The numerical method presented here is efficient and has shown to require a fraction of the memory and computing time required by conventional methods. The matrix-free algorithm is initially validated using an injection mold designed to produce a plaque with a molded-in hole. Subsequently, the method is further applied to a representative automotive plastic component.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...