Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Engineering General  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 455-466 
    ISSN: 0271-2091
    Keywords: computational fluid dynamics ; unsteady incompressible flow ; method of lines ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A novel approach to the development of a code for the solution of the time-dependent two-dimensional Navier-Stokes equations is described. The code involves coupling between the method of lines (MOL) for the solution of partial differential equations and a parabolic algorithm which removes the necessity of iterative solution on pressure and solution of a Poisson-type equation for the pressure. The code is applied to a test problem involving the solution of transient laminar flow in a short pipe for an incompressible Newtonian fluid. Comparisons show that the MOL solutions are in good agreement with the previously reported values. The proposed method described in this paper demonstrates the ease with which the Navier-Stokes equations can be solved in an accurate manner using sophisticated numerical algorithms for the solution of ordinary differential equations (ODEs).
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 26 (1988), S. 1201-1212 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Exact expressions for the distributions of the components of radiative flux density and the radiative energy source term in terms of wall and medium temperature distributions have been formulated for an emitting absorbing medium of constant properties bounded by black walls of a cylindrical enclosure. The accuracy of numerical solutions has been tested on an idealized enclosure for which exact analytical solution of the expressions is possible and shown to have six-figure accuracy. The exact expressions have then been solved numerically for an enclosure problem based on data reported previously on a large scale experimental furnace. The principal feature of the data is highly non-uniform temperature distributions which are typical of the conditions encountered in industrial furnaces. These data have been chosen because of their practical importance and the non-availability of exact solutions for such data. The resulting exact solutions have been tabulated and are intended to serve in the future as standards for testing the accuracy of the approximate predictions produced using various three-dimensional flux models in cylindrical configurations.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...