Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 4 (1984), S. 421-439 
    ISSN: 0271-2091
    Keywords: Laminar Flow ; Turbulent Flow ; Compressible Flow ; Separation ; Time-split Method ; Finite Element Method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The time-split finite element method is extended to compute laminar and turbulent flows with and without separation. The examples considered are the flows past trailing edges of a flat plate and a backward-facing step. Eddy viscosity models are used to represent effects of turbulence. It is found that the time-split method produces results in agreement with previous experimental and computational results. The eddy viscosity models employed are found to give accurate predictions in all regions of flow except downstream of reattachment.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 5 (1985), S. 463-481 
    ISSN: 0271-2091
    Keywords: Trailing-edge Flow ; Laminar Flow ; Turbulent Flow ; Generalized Co-ordinates ; Group Finite-element Method ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A consistent three-level time-split group finite-element method, suitable for the computation of viscous compressible flows in irregular geometric domains, is described. Exploitation of the group12 formulation permits an accurate and economical algorithm to be developed in a generalized-co-ordinate (ζ,η) space. A variable sweep cycle is used to accelerate convergence to the steady state. The method is demonstrated by computing laminar and turbulent flow past a trailing edge. The method uses an algebraic eddy viscosity model to represent turbulence and produces results in close agreement with the experiments and computations of Viswanath et al8.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 121-135 
    ISSN: 0271-2091
    Keywords: spatial marching methods ; reduced Navier-Stokes equations ; explicit methods ; Runge-Kutta method ; hypersonic flow ; supersonic flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper develops a spatial marching method for high-speed flows based on a finite volume approach. The method employs the reduced Navier- Stokes equations and a pressure splitting in the streamwise direction based on the Vigneron strategy. For marching from an upstream station to one downstream the modified five-level Runge-Kutta integration scheme due to Jameson and Schmidt is used. In addition, for shock handling and for good convergence properties the method employs a matrix form of the artificial dissipation terms, which has been shown to improve the accuracy of predictions. To achieve a fast rate of convergence, a local time-stepping concept is used. The method retains the time derivative in the governing equations and the solution at every spatial station is obtained in an iterative manner.The developed method is validated against two test cases: (a) supersonic flow past a flat plate; and (b) hypersonic flow past a compression corner involving a strong viscous-inviscid interaction. The computed wall pressure and wall heat transfer coefficients exhibit good general agreement with previous computations by other investigators and with experiments.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...