Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: Key words Cassava (Manihot esculenta) ; Chemical stress ; Environmental stress ; Oxidative stress ; Superoxide dismutase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA, mSOD1, encoding cytosolic copper/zinc superoxide dismutase (CuZnSOD) was cloned and characterized from cell cultures of cassava (Manihot esculenta Crantz) which produce a high yield of SOD. mSOD1 encodes a 152-amino acid polypeptide with a pI value of 5.84. Southern analysis using an mSOD1-specific probe indicated that a single copy of the mSOD1 gene is present in the cassava genome. The mSOD1 gene is highly expressed in cultured cells, as well as in intact stems and tuberous roots. It is expressed at a low level in leaves and petioles. Transcripts of mSOD1 were not detected in nontuberous roots. Transcriptional level of mSOD1 reaches a high level at stationary phase, and then sharply decreases during further culture. In excised cassava leaves, the mSOD1 gene responded to various stresses in different ways. The stresses tested included changes in temperature and exposure to stress-inducing chemicals. Levels of mSOD1 transcript increased dramatically a few hours after heat stress at 37° C and showed a synergistic effect with wounding stress. Levels decreased in response to chilling stress at 4° C and showed an antagonistic effect with wounding stress. The gene was induced by abscisic acid, ethephon, NaCl, sucrose, and methyl viologen. These results indicate that the mSOD1 gene is involved in the response to oxidative stress induced by environmental change.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key words Peroxidase cDNAs ; Suspension cultures ; Environmental stress ; Sweet potato (Ipomoea batatas)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two cDNAs for anionic peroxidase (PODs), swpa2 and swpa3, were isolated from suspension cultures of sweet potato (Ipomoea batatas), and their expression was investigated with a view to understanding the physiological function of PODs in relation to environmental stresses. Swpa2 (whose putative mature protein product would have a pI value of 4.1) and swpa3 (4.3) encode polypeptides of 358 and 349 amino acids, respectively. The genes from which they were derived are predominantly expressed in cultured cells of sweet potato; transcripts of swpa2 were not detected in any tissues of the intact plant, and transcripts of swpa3 were detected at a low level only in the stem tissue. During cell culture, the expression patterns of the two genes differed; the level of swpa2 RNA progressively increased during cell growth, whereas that of swpa3 reached a maximum at the stationary phase and decreased on further culture. The two genes responded differently to stresses such as wounding or chilling of leaves. Swpa2 was strongly induced 48 h after wounding, but swpa3 was not affected by this treatment. The two genes were also highly expressed upon chilling (4° C), but expression was reduced by prior acclimation at 15° C. In addition, both genes were strongly induced immediately after treatment with ozone, and expression had decreased to the basal level 12 h after treatment. The response of these two genes to stresses such as aging, wounding, and chilling are different from those of the POD genes (swpa1 encoding an anionic product and swpn1 a neutral peroxidase) that we described previously. The responses of the two genes were also different from each other. These results suggest that the two new POD genes are involved in overcoming oxidative environmental stress, and each POD gene may be regulated by cell growth and environmental stress in different ways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-203X
    Keywords: Key wordsArabidopsis thaliana ; Environmental stress ; Glutathione S-transferase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A glutathione S-transferase (GST) gene was cloned in Arabidopsis thaliana. The gene, designated ATGST 1, contained the entire transcription unit in three exons interrupted by two introns. The combined sequence of three exons had an open reading frame which predicted a GST protein of 208 amino acids. Gene transcription has been reported to be induced by pathogen attack and dehydration. In the present study northern blot analysis using a gene-specific DNA probe in the 3′ untranslated region revealed that expression of the gene was also rapidly induced by other environmental stresses such as wounding, low temperature, high salt and DPE herbicide treatment. The promoter region of the gene contained the sequence motif ATTTCAAA that is known to be present in ethylene-responsive elements and other motifs that are highly conserved amongst stress-inducible gene promoters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...