Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Enzyme modulation ; Nitrate reductase ; Protein kinase ; Protein phosphorylation ; Protein purification ; Spinacia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using a three-step purification procedure, two protein fractions which catalyzed the ATP-dependent in-activation of nitrate reductase (NR) were obtained from spinach (Spinacia oleracea L.) leaf extracts. Purification involved ammonium-sulfate fractionation, anion-exchange chromatography and size-exclusion chromatography. The capacity of the fractions to inactivate NR by preincubation with ATP was examined by using as target either a crude NR-ammonium sulfate precipitate or partially purified NR (ppNR). The fractions were also examined for protein-kinase activity by measuring the phosphorylation of histone III S (or casein) withγ-[32P]ATP as substrate, and subsequent SDS-PAGE, autoradiography and liquid scintillation counting of cut-off histone bands. The two proteins had apparent molecular weights in the 67-kDa and 100-kDa region (termed P67 and P100, respectively). Neither P67 nor P100 alone was able to inactivate ppNR by preincubation with ATP. However, when P100 and P67 were added together to ppNR, ATP-dependent inactivation was observed, with a half-time of about 10 min. The P67, but not P100 had histone-kinase activity (casein was not phosphorylated). Using the partially purified system, various compounds were examined as possible effectors of NR inactivation. Sugar phosphates had little effect on the inactivation of NR. Addition of AMP at very high concentrations (5 mM), and removal of Mg2+ by excess EDTA also prevented the inactivation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 191 (1993), S. 173-179 
    ISSN: 1432-2048
    Keywords: Anaerobiosis ; Enzyme modulation ; Nitrate reductase ; Pisum ; Protein phosphorylation ; Root
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The regulatory properties of nitrate reductase (NR; EC 1.6.6.1) in root extracts from hydroponically grown pea (Pisum sativum L. cv. Kleine Rheinländerin) plants were examined and compared with known properties of NR from spinach and pea leaves. Nitrate-reductase activity (NRA) extracted from pea roots decreased slowly when plants were kept in the dark, or when illuminated plants were detopped, with a half-time of about 4 h (= slow modulation in vivo). In contrast, the half-time for the dark-inactivation of NR from pea leaves was only 10 min. However, when root tip segments were transferred from aerobic to anaerobic conditions or vice versa, changes in NRA were as rapid as in leaves (= rapid modulation in vivo). Nitrate-reductase activity was low when extracted from roots kept in solutions flushed with air or pure oxygen, and high in nitrogen. Okadaic acid, a specific inhibitor of type-1 and type-2A protein phosphatases, totally prevented the in vivo activation by anaerobiosis of NR, indicating that rapid activation of root NR involved protein dephosphorylation. Under aerobic conditions, the low NRA in roots was also rapidly increased by incubating the roots with either uncouplers or mannose. Under these conditions, and also under anaerobiosis, ATP levels in roots were much lower than in aerated control roots. Thus, whenever ATP levels in roots were artificially decreased, NRA increased rapidly. The highly active NR extracted from anaerobic roots could be partially inactivated in vitro by preincubation of desalted root extracts with MgATP (2 mM), with a half-time of about 20 min. It was reactivated by subsequently incubating the extracts with excess AMP (2 mM). Thus, pea root NR shares many of the previously described properties of NR from spinach leaves, suggesting that the root enzyme, like the leaf enzyme, can be rapidly modulated, probably by reversible protein phosphorylation/ dephosphorylation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Enzyme modulation ; Nitrate reductase ; Protein kinase ; Protein phosphorylation ; Protein purification ; Spinacia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using a three-step purification procedure, two protein fractions which catalyzed the ATP-dependent in-activation of nitrate reductase (NR) were obtained from spinach (Spinacia oleracea L.) leaf extracts. Purification involved ammonium-sulfate fractionation, anion-exchange chromatography and size-exclusion chromatography. The capacity of the fractions to inactivate NR by preincubation with ATP was examined by using as target either a crude NR-ammonium sulfate precipitate or partially purified NR (ppNR). The fractions were also examined for protein-kinase activity by measuring the phosphorylation of histone III S (or casein) with γ-[32P]ATP as substrate, and subsequent SDS-PAGE, autoradiography and liquid scintillation counting of cut-off histone bands. The two proteins had apparent molecular weights in the 67-kDa and 100-kDa region (termed P67 and P100, respectively). Neither P67 nor P100 alone was able to inactivate ppNR by preincubation with ATP. However, when P100 and P67 were added together to ppNR, ATP-dependent inactivation was observed, with a half-time of about 10 min. The P67, but not P100 had histone-kinase activity (casein was not phosphorylated). Using the partially purified system, various compounds were examined as possible effectors of NR inactivation. Sugar phosphates had little effect on the inactivation of NR. Addition of AMP at very high concentrations (5 mM), and removal of Mg2+ by excess EDTA also prevented the inactivation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...