Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    General relativity and gravitation 29 (1997), S. 1269-1281 
    ISSN: 1572-9532
    Keywords: BLACK HOLE THERMODYNAMICS ; TYPES OF THERMODYNAMICS ; FUNCTIONAL PROPERTIES OF ENTROPY
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We analyze the thermodynamics of systems which have entropy functions of the type S(m) = amβ + b, where m is an extensive variable and a, b, and β are constants. Such functions apply to dilatonic black holes whose mass is m. This analysis continues our earlier treatment of the general classification of the thermodynamics of systems by whether they exhibit entropy functions which may or may not be either superadditive, homogeneous or concave in the extensive variables on which the entropy depends. This leads to a classification into 8 types of thermodynamics (with several subtypes). We show that only five of these are available for systems having the entropy given above, and these are in fact realized if the constants are given appropriate values.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 855-867 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: For a triplet competitive-consecutive halogenation sequence forming mono-, di- and trihalogenated products of the form, A + B → R + B → S + B → T, under semibatch operation adding B to A, if perfect mixing could be assumed at all scales, the product distribution would be unchanged on scaling up. However, if the reaction rates are reasonably faster than the mixing rate, the semibatch addition of B to A will be imperfectly backmixed, exhibiting macroscale concentration gradients. This partial segregation of the primary reagents is capable of modifying the selectivity and corresponding appearance of R, S and T in the course of the batch. Imperfect mixing is quantified using the networks-of-zones model. The effect of scaling up at equal tip speed is examined for a lab-scale 0.3-dm3 reactor, a semitech 30-dm3 reactor, and a production-scale 3,000-dm3 vessel. The intensity of partial segregation is weak at the lab scale, but very severe at the production scale. The lab-scale reactor is therefore close to perfectly backmixed, and the primary, secondary and tertiary products appear in sequence. At the semitech scale the increased partial segregation causes the final product to initially precede the secondary product paradoxically but lag the initial product. At the large scale the more severe segregation between A and B gives an even greater paradox, whereby the final product appears ahead of both the primary and secondary ones. The segregated concentration fields of A and B are visualized as sectional image reconstructions for networks comprising on the order of 1,000 zones. Localized intensive plumes of B emanating from the addition point cause the paradoxical reversals of product sequences. The calculations are directly relevant to real industrial miscible liquid halogenations for which product distribution paradoxes have been observed (Haywood, 1990).
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...