Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Cutaneous EPSPs ; Fictive locomotion ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We examined modulation of transmission in short-latency, distal hindlimb cutaneous reflex pathways during fictive locomotion in 19 decerebrate cats. Fictive stepping was produced either by electrical stimulation of the mesencephalic locomotor region (MLR) or by administration of Nialamide and 1-DOPA to acutely spinalized animals. Postsynaptic potentials (PSPs) produced by electrical stimulation of low threshold afferents (〈 2.5 times threshold) in the superficial peroneal (SP), sural, saphenous or medial plantar nerves were recorded intracellularly from various extensor (n = 28) and flexor (n = 24) motoneurons and averaged throughout the step cycle, together with voltage responses to intrasomatic constant current pulses (in order to monitor relative cell input resistance). Each motoneuron studied displayed rhythmic background oscillations in membrane potential and correlated variations in input resistance. The average input resistance of extensor motoneurons was lowest during mid-flexion, when the cells were relatively hyperpolarized and silent. Conversely, average input resistance of flexor motoneurons was highest during mid-flexion, when they were depolarized and active. The amplitude of the minimum-latency excitatory components of PSPs produced by cutaneous nerve stimulation were measured from computer averaged records representing six subdivisions of the fictive step cycle. Oligosynaptic EPSP components were consistently modulated only in the superficial peroneal responses in flexor motoneurons, which exhibited enhanced amplitude during the flexion phase. With the other skin nerves tested (sural, saphenous, and plantar), no consistent patterns of modulation were observed during fictive locomotion. We conclude that transmission through some, but not all, oligosynaptic excitatory cutaneous pathways is enhanced by premotoneuronal mechanisms during the flexion phase of fictive stepping in several cat hindlimb motor nuclei. The present results suggest that the patterns of interaction between the locomotor central pattern generator and excitatory cutaneous reflex pathways depend on the source of afferent input and on the identity of the target motoneuron population.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Fictive locomotion ; Cutaneous reflex pathways ; Flexor digitorum longus muscle ; Motoneurons ; Interneurons ; Reflex modulation ; Spinal cord
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We examined modulation of transmission of short-latency excitation produced by distal hindlimb cutaneous input, as well as fluctuations in motoneuron membrane potential and input resistance, in flexor digitorum longus (FDL) motoneurons during fictive locomotion. Fictive stepping was induced in unaesthetized, decerebrate cats either by repetitive stimulation of the mesencephalic locomotor region (MLR) or by administration of Nialamide and 1 DOPA after low spinal section. In the MLR preparations, brief depolarizing waves occurred in FDL cells during the early flexion phase of fictive stepping, immediately after cessation of activity in extensor muscles. In some FDL cells, plateau-like depolarizations also occurred during the extensor phase. Fictive stepping induced in acutely spinalized cats by administration of l-DOPA was slower and more variable; peak polarization in FDL motoneurons always occurred during the early flexion phase but there was usually no distinct depolarization during extension. In both types of preparation, the initial EPSP components in synaptic potentials (SP-EPSPs) produced by electrical stimulation of the cutaneous division of the superficial peroneal nerve (SP) were maximally facilitated during early flexion, coincident with the peak of background depolarization. This enhancement was manifested by an increase in the amplitude of initial SP-EPSP components or by decreased central latency of the initial EPSP components, or both. In most FDL motoneurons, input resistance decreased systematically during late flexion, coincident with relative membrane hyperpolarization. Correction of SP-EPSP amplitudes for changes in input resistance suggested that SP-EPSP facilitation persisted throughout the flexion phase These findings are discussed with reference to modulation of cutaneous reflexes during locomotion and the possibility that excitatory last-order interneurons in particular cutaneous reflex pathways may distribute excitatory drive from the central pattern generator for locomotion to FDL α-motoneurons
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...