Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 165 (1996), S. 127-133 
    ISSN: 1573-4919
    Keywords: Trypanosoma cruzi ; rat heart ; mitochondria ; oxidative phosphorylation ; FoF1-ATPase ; ATP hydrolysis ; ATP synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The kinetic properties of ATP hydrolysis and synthesis by FoF1-ATPase of heart mitochondria were evaluated during the acute phase of T. cruzi infection in rats. Mitochondria and submitochondrial particles were isolated 7 days (early stage) and 25 days (late stage) following infection of rats with 2 × 105 trypomastigote forms of the Y strain of T. cruzi. The kinetic properties for ATP hydrolysis were altered for the early but not the late stage, showing a changed pH profile, increased K0.5 values, and a decreased total Vmax. The Arrhenius' plot for membrane-associated enzyme showed a higher transition temperature with a lower value for the activation energy in body temperature. For the Triton X-100 - solubilized enzyme, the plot was similar to the control. A decrease in the efficiency of ADP phosphorylation by mitochondria, measured by the firefly-luciferase luminescence, was observed only during the late stage and appeared to be correlated with a decrease in the affinity of the FoF1-ATPase for ADP. It is proposed that in the early stage, during the acute phase of T. cruzi infection in rats, heart FoF1-ATPase undergoes a membrane-dependent conformational change in order to maintain the phosphorylation potential of mitochondria, which would compensate for the uncoupling of mitochondrial function. Also, during both the early and late stages, the enzyme seems to be under the regulation of the endogenous inhibitor protein for the preservation of cellular ATP levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4919
    Keywords: mercury ; rat kidney ; mitochondria ; oxidative phosphorylation ; FoF1-ATPase ; ATP synthesis ; ATP hydrolysis ; oxidative stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The effects of Hg(II) on bioenergetic and oxidative status of rat renal cortex mitochondria were evaluated both in vitro, and in vivo 1 and 24 h after treatment of animals with 5 mg HgCl2/kg ip. The parameters assessed were mitochondrial respiration, ATP synthesis and hydrolysis, glutathione content, lipid peroxidation, protein oxidation, and activity of antioxidant enzymes. At low concentration (5 µM) and during a short incubation time, Hg(II) uncoupled oxidative phosphorylation while at slightly higher concentration or longer incubation time the ion impaired the respiratory chain. The rate of ATP synthesis and the phosphorylation potential of mitochondria were depressed, although inhibition of ATP synthesis did not exceed 50%. In vivo, respiration and ATP synthesis were not affected 1 h post-treatment, but were markedly depressed 24 h later. ATP hydrolysis by submitochondrial particle FoF1-ATPase was inhibited (also by no more than 50%) both in vitro, and in vivo 1 and 24 h post-treatment. Hg(II) induced maximum ATPase inhibition at about 1 uM concentration but did not have a strong inhibitory effect in the presence of Triton X-100. Oxidative stress was not observed in mitochondria 1 h post-treatment. However, 24 h later Hg(II) reduced the GSH/GSSG ratio and increased mitochondrial lipid peroxidation and protein oxidation, as well as inhibited GSH-peroxidase and GSSG-reductase activities. These results suggest that the following sequence of events may be involved in Hg(II) toxicity in the kidney: (1) inhibition of FoFl-ATPase, (2) uncoupling of oxidative phosphorylation, (3) oxidative stress-associated impairment of the respiratory chain, and (4) inhibition of ATP synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...