Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Freeze fracture  (3)
  • Chilling injury  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Sexual plant reproduction 2 (1989), S. 270-276 
    ISSN: 1432-2145
    Schlagwort(e): Freeze fracture ; Generative cell ; Nuclear pores ; Phoenix dactylifera ; Plasma membranes ; Pollen
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Mature pollen of Phoenix dactylifera was freeze-fractured in germination medium. The surface of the generative cell was highly convoluted. Microtubules were not in close contact with the indentations. The vegetative cell membrane was appressed to the generative cell. Ordered ridges appeared in both fracture faces of the vegetative cell inner plasma membrane at the indentations. No ordered ridges were observed in the fracture faces of the generative cell. The nuclear envelopes of the vegetative and generative cells differed, with the generative cell having fewer and larger nuclear pores irregularly dispersed among porefree areas. These differences in plasma membrane and in nuclear envelope correlate with the subsequent differentiation of the two cells.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Protoplasma 136 (1987), S. 71-80 
    ISSN: 1615-6102
    Schlagwort(e): Avocado ; Chilling injury ; Freeze-fracture ; Gel-phase lipid ; Membranes ; Phase separations
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Unripe avocado fruit (Persea americana Mill. cv Hass) were held at 6 °C either in air or in an atmosphere with 100 PPM ethylene and were assessed for chilling injury after one and two weeks. Injury did not occur in any fruit after one week. After two weeks, the fruit in air were still uninjured, but the fruit subjected to ethylene exhibited chilling injury. When the uninjured fruit (both air-treated for one and two weeks and ethylene-treated for one week) were allowed to warm to room temperature before freezing for freeze fracture electron microscopy, replicas revealed membranes with a randomly dispersed pattern of intramembranous particles (IMPs). However, when these uninjured fruit were frozen for freeze fracture without warming, particle-free domains were visible in the plasmalemma. The membranes of the ethylene-treated, chilling-injured (2 weeks) fruit, on the other hand, contained particle-depleted regions in the plasmalemma of fruit frozen not only from 6 °C but also in those allowed to warm to room temperature before freezing for freeze fracture. These particle depleted microdomains were not seen in fruit kept continuously at room temperature (20 °C), even in the presence of high levels of endogenous ethylene which is produced during normal ripening. We suggest these particle-depleted microdomains formed in the fruit frozen for freeze fracture from low temperatures and in the chilling-injured fruit to be due to lateral phase separations of the membrane components, possibly due to an increase in the viscosity of some membrane lipids, leading to the formation of microdomains of gel phase lipid in the plane of the membrane. These phase separations appear to be initially reversible by raising the temperature, however, this reversibility is apparently lost after injury has occurred. With regard to the cause of chilling injury in avocados, we suggest that some secondary effect is involved due to the long term presence of gel phase lipids in the membrane.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Protoplasma 146 (1988), S. 157-165 
    ISSN: 1615-6102
    Schlagwort(e): Calcium ; Endomembrane system ; Enzyme secretion ; Freeze fracture ; Gibberellic acid ; Protoplasts
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Freeze-fracture electron microscopy was used to study changes in the endomembrane system of barley (Hordeum vulgare L. cv. Himalaya) aleurone protoplasts. Protoplasts were used for this study because their response to calcium and the plant hormone gibberellic acid (Ga3) can be monitored prior to rapid freezing of cells for electron microscopy. Protoplasts incubated in Ga3 plus Ca2+ secrete elevated levels of a-amylase relative to cells incubated in Ga3 or Ca2+ alone. The endoplasmic reticulum (ER) and Golgi apparatus of protoplasts incubated in Ga3 plus Ca2+ undergo changes that are well correlated with the synthesis and secretion of a-amylase. The ER, which appears as short, single sheets of membrane in Ca2+-and Ga3-treated protoplasts, exists as a series of long fenestrated stacks of membranes following incubation in Ga3 plus Ca2+. The Golgi apparatus is also more highly developed in protoplasts treated with Ga3 plus Ca2+. This organelle is larger and has more vesicles associated with its periphery in protoplasts that actively secrete a-amylase. Evidence that the Golgi apparatus participates in a-amylase secretion is also provided by experiments with the ionophore monensin, which causes pronounced swelling of Golgi cisternae and inhibits the secretion of a-amylase. We interpret these observations as showing that the ER and Golgi apparatus of barley aleurone participate in the intracellular transport and secretion of a-amylase. The plasmalemma (PF face) of barley aleurone protoplasts shows a high density of intramembranous particles (IMPs) which, in general, are evenly distributed. Occasionally, ordered arrays of IMPs are observed, possibly resulting fro m osmotic stress. after 48 hours the plasmalemma of some Ga3-treated protoplasts show particle-free areas considered to be indications of senescence.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1615-6102
    Schlagwort(e): Desiccation tolerance ; Freeze fracture ; Membrane structure ; Selaginella ; Tortula
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Dry (7–10% water content) leaves of the spikemossSelaginella lepidophylla (“resurrection plant”) and of the desiccationtolerant moss,Tortula ruralis were examined by freeze fracture electron microscopy. As has been described for dry seeds, the cells of these dehydrated leaves were shrunken, with highly convoluted walls and membranes. The membranes of all samples had a lipid bilayer organization with dispersed intramembranous particles (IMPs). Lipid droplets were very closely associated with the plasmamembrane. Chloroplasts were surrounded by a double membrane envelope and contained well-organized grana. Mitochondria were irregular in outline, and endoplasmic reticulum and cytoplasmic vesicles were present.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...