Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-675X
    Keywords: apoptosis ; cyclin B1/CDC 2 ; G2/M arrest ; MAD 2 ; paclitaxel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Paclitaxel (Taxol™) is a microtubule-interfering agent that induced persistent and transient G2/M arrest before apoptosis in human nasopharyngeal carcinoma (NPC) cells at high and low concentrations, respectively. In this study, we intended to explore the underlying molecular events and found that cellular cyclin B1/CDC 2 kinase activity was increased and persisted for 〉6 h upon paclitaxel treatment both at high and low concentrations. Furthermore, activation of MAD 2 checkprotein could account for the loss of cyclin B1 ubiquitination and the persistence of cyclin B1/CDC 2 activation in the cases. To investigate the involvement of cyclin B1 and MAD 2 activation in paclitaxel-induced apoptosis, we introduced affinity-purified anti-cyclin B1 and MAD 2 antibodies into NPC cells by electroporation before the further paclitaxel treatment. The antibodies against cyclin B1 and MAD 2 indeed attenuated paclitaxel-induced cytotoxicity and DNA fragmentation. Our study suggests that activation of cyclin B1/CDC 2 and MAD 2 were the M-phase events required for paclitaxel-induced apoptosis in NPC cells. The dys-regulated cyclin B1/CDC 2 activation could enhance the prometaphase progression, but activation of MAD 2 rendered cells inable to exit from the metaphase. Under this circumstance, cells were probably going to “mitotic catastrophe” and ultimately, destined to apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...