Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 354 (1996), S. 746-754 
    ISSN: 1432-1912
    Schlagwort(e): Key words Patch-clamp technique ; Rat cardiac ; myocytes ; Verapamil ; Gallopamil ; Devapamil ; Quaternary phenylalkylamines ; pH ; Binding sites
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract The effects of the phenylalkylamines verapamil (V), gallopamil (G), and devapamil (D) and their corresponding quaternary derivatives on the transient outward current (Ito) were examined in rat ventricular cardiomyocytes using the whole-cell patch-clamp technique. The question was addressed, whether phenylalkylamines act on Ito from the inside or the outside or from both sides of the cell membrane. To this end, the myocytes were either superfused extracellularly or perfused intracellularly with drug-containing solutions. In addition, the effects of verapamil were investigated at different pH-values. V, G, and D (30 μM each), applied extracellularly, reduced the steady state current of Ito, Ito(150 ms), to 34 ± 3.3, 33 ± 6, and 30 ± 5, respectively (% of control; means ± SEM). The effects of V (30 μM) on Ito were similar at various external pH-values (reduction of Ito(150 ms) by 69 ± 6 at pH 6.5, by 66 ± 4 at pH 7.4, by 68 ± 8 at pH 8.5, and by 58 ± 10 at pH 9.5; % of control; means ± SEM). In contrast, the effect of 4-aminopyridine (300 μM) on Ito was enhanced after alkalinisation: the peak current of Ito was reduced to 49 ± 5 at pH 7.4 and to 5 ± 2 at pH 9.2 (% of control; means ± SEM). V, G, and D (300 μM) failed to produce any effect on Ito, when applied intracellularly (values of Ito(150 ms): 97 ± 6, 105 ± 4, and 94 ± 4, respectively; % of control; means ± SEM). In contrast, 4-aminopyridine (3 mM) depressed the peak current of Ito to 69 ± 6% of control (mean ± SEM), when applied intracellularly. The permanently charged quaternary derivatives of the phenylalkylamines q-V, q-G, and q-D (300 μM) did not significantly affect Ito, when applied extracellularly (values of Ito(150 ms): 94 ± 2, 90 ± 3, and 94 ± 3, respectively; % of control; means ± SEM) but diminished Ito, when applied intracellularly (reduction of Ito(150 ms) to 43 ± 5, 56 ± 7, and 63 ± 4, respectively; % of control; means ± SEM). Intracellularly applied V (300 μM) did not reduce Ito at pH 6.5 at which V is protonated to 99.4%. It is suggested that tertiary phenylalkylamines act on Ito by binding to a membrane site accessible from the outside, whereas their quaternary derivatives affect Ito by binding to a membrane site located at the inside of the cell membrane. In contrast, 4-aminopyridine is supposed to act on Ito from the inside of the cell membrane.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 352 (1995), S. 322-330 
    ISSN: 1432-1912
    Schlagwort(e): Key words Verapamil ; Gallopamil ; Devapamil ; L-type calcium current ; Rat heart myocytes ; Whole-cell patch-clamp
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  The effects of the phenylalkylamines verapamil, gallopamil, and devapamil on L-type calcium currents (ICa) were studied in ventricular myocytes from rat hearts using the whole-cell patch-clamp technique. In particular, the question was addressed, whether the pharmacological binding sites for these drugs were located at the inner and/or at the outer surface of the cell membrane. Therefore, tertiary verapamil, gallopamil, and devapamil and their corresponding quaternary derivatives were applied either from the outside or the inside of the cell membrane. Extracellular application of verapamil, gallopamil and devapamil (each at 3 μM) reduced ICa to 16.1±8.6%, 11±8.9%, and 9.3±6% of control, respectively. Intracellular application of the same substances, via the patch pipette filled with 30 μM of either verapamil, gallopamil, or devapamil, failed to depress ICa. The quaternary derivatives of the phenylalkylamines (30 μM) were ineffective both when applied extracellularly or intracellularly. It is suggested that phenylalkylamines block ICa in ventricular myocytes by acting on a binding site of the calcium channel molecule located at the outer surface of the cell membrane.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...