Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Algorithmica 12 (1994), S. 170-181 
    ISSN: 1432-0541
    Keywords: General-purpose parallel computation ; Communication latency ; Block PRAM ; Locality ; PRAM simulations ; Universal hashing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract Consider the problem of efficiently simulating the shared-memory parallel random access machine (PRAM) model on massively parallel architectures with physically distributed memory. To prevent network congestion and memory bank contention, it may be advantageous to hash the shared memory address space. The decision on whether or not to use hashing depends on (1) the communication latency in the network and (2) the locality of memory accesses in the algorithm. We relate this decision directly to algorithmic issues by studying the complexity of hashing in the Block PRAM model of Aggarwal, Chandra, and Snir, a shared-memory model of parallel computation which accounts for communication locality. For this model, we exhibit a universal family of hash functions having optimal locality. The complexity of applying these hash functions to the shared address space of the Block PRAM (i.e., by permuting data elements) is asymptotically equivalent to the complexity of performing a square matrix transpose, and this result is best possible for all pairwise independent universal hash families. These complexity bounds provide theoretical evidence that hashing and randomized routing need not destroy communication locality, addressing an open question of Valiant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...