Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Germination (seeds)  (4)
  • 1
    ISSN: 1432-2048
    Schlagwort(e): Endosperm (galactomannan) ; Germination (seeds) ; Lipid ; Phytate ; Storage proteins ; Trigonella
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Changes in total nitrogen, soluble amino nitrogen, lipid and phytate contents, and in the activities of proteinase (pH 7.0), isocitrate lyase and phytase were followed in the endosperm, cotyledons, and axis during germination of fenugreek seeds and subsequent growth of the seedlings. The endosperm is comprised largely of cell-wall galactomannans: the majority of the seed total nitrogen, lipid and phytate (5%, 8%, 0.44% of seed dry weight respectively) is localised within the cotyledons as stored reserves. Germination is completed after 10–14 h from the start of imbibition, but the major reserves are not mobilised during the first 24 h. Then the total nitrogen content of the cotyledons starts to decrease and that of the axis increases; there is a concomitant accumulation of soluble amino nitrogen in both cotyledons and axis. An increase in proteinase activity in the cotyledons correlates well with the depletion of total nitrogen therein. Depletion of lipid and phytate reserves in the different seed tissues constitutes a late event, occurring after 50 h from the start of imbibition, and is coincident with the final disintegration of the endosperm tissue. The depletion of phytate and stored lipids is accompanied by an increase in phytase and isocitrate lyase activity. It appears that the products of lipid hydrolysis are converted by gluconeogenesis to serve as the major source of sugars for the growing axis after the endosperm galactomannan has been completely mobilised.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-2048
    Schlagwort(e): Arabinan ; Arabinogalactan ; Cell wall (storage polysaccharides) ; Galactan ; Germination (seeds) ; Hemicellulose ; Lupinus
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Some 22% of the dry weight of the cotyledons of resting seeds of Lupinus angustifolius cv. Unicrop has been shown to be non-starch polysaccharide material comprising the massively thickened walls of the storage mesophyll cells. On hydrolysis this material released galactose (76%), arabinose (13%), xylose (4%), uronic acid (7%): only traces of glucose were detected indicating the virtual absence of cellulose from the walls. Changes in the amount and composition of this material following germination have been studied in relation to parameters of seedling development and the mobilisation of protein, lipid and oligosaccharide reserves. Starch, which was not present in the resting seed, appeared transitorily following germination: under conditions of continuous darkness starch levels were reduced. During the period of bulk-reserve mobilisation, 92% of the non-starch polysaccharide material disappeared from the cotyledons. The residual cell-wall material released galactose (14%), arabinose (19%), xylose (24%) and uronic acid (43%). The galactose and arabinose residues of the cotyledonary cell walls clearly constitute a major storage material, quantitatively as important as protein. The overall role of the wall polysaccharides in seedling development is discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-2048
    Schlagwort(e): Endosperm ; Germination (seeds) ; Lactuca ; Reserve hydrolysis ; Storage protein
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The timing of changes in total nitrogen and soluble amino nitrogen content, and in the activities of proteinase (pH 7.0), isocitrate lyase, catalase, phytase, phosphatase (pH 5.0), α-galactosidase and β-mannosidase were studied in extracts from the cotyledons, axis and endosperms of germinating and germinated light-promoted lettuce seeds. The largest amount of total nitrogen (2.7% seed dry weight) occurs within the cotyledons, as storage protein. As this decreases the total nitrogen content of the axis increases and the soluble amino nitrogen in the cotyledons and axis increases. Proteinase activity in the cotyledons increases coincidentally with the depletion of total nitrogen therein. Enzymes for phytate mobilisation and for gluconeogenesis of hydrolysed lipids increase in activity in the cotyledons as the appropriate stored reserves decline. Beta-mannosidase, an enzyme involved in the hydrolysis of oligo-mannans released by the action of endo-β-mannase on mannan reserves in the endosperm, arises within the cotyledons. This indicates that complete hydrolysis of mannans to the monomer does not occur within the endosperm. Mobilisation of all cotyledon reserves occurs after the endosperm has been degraded, providing further evidence that the endosperm is an early source of food reserves for the growing embryo.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1432-2048
    Schlagwort(e): Endosperm ; Galactomannan ; Germination (seeds) ; Storage polysaccharide ; Trigonella ; Water potential
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Some 30% of the reserve material in the fenugreek seed is galactomannan localised in the endosperm; the remainder is mainly protein and lipid in the cotyledons of the embryo. The importance of galactomannan to the germinative physiology of fenugreek has been investigated by comparing intact and endosperm-free seeds. From a purely nutritional point of view the galactomannan's rôle is not qualitatively different from that of the food reserves in the embryo. Nevertheless, due to its spatial location and its hydrophilic properties, the galactomannan is the molecular basis of a mechanism whereby the endosperm imbibes a large quantity of water during seed hydration and is able to “buffer” the germinating embryo against desiccation during subsequent periods of drought-stress. The galactomannan is clearly a dual-purpose polysaccharide, regulating water-balance during germination and serving as a substrate reserve for the developing seedling following germination. The relative importance of these two rôles is discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...