Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 168 (1998), S. 619-623 
    ISSN: 1432-136X
    Keywords: Key words Endothelin ; Gill ; Oncorhynchus mykiss ; Osmoregulation ; Respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The lamellae of the fish gill are the primary sites for oxygen uptake from the water. Here, only two very thin layers of cells separate the blood from the water. Therefore, energetically costly ion-fluxes will also occur between blood and water, and it has been hypothesised that the blood flow within the lamellae can be regulated through vasoconstriction, but evidence for this has been lacking. Through direct observations of the lamellae of rainbow trout (Oncorhynchus mykiss) in vivo, using epi-illumination microscopy, we show here that an endothelium-derived vasoactive peptide, endothelin-1 (ET-1, 0.2 μg kg−1 or 1.0 μg kg−1), is able to completely constrict the vascular sheet in the lamellae, probably by inducing contraction of pillar cells. This coincided with a dose-dependent increase in ventral aortic blood pressure (rising from 6.6 kPa to 12.0 kPa in response to the high ET-1 dose). However, blood continued to flow through the marginal channel that circumvents each lamella. Thus, ET-1 caused an intralamellar blood shift from the lamellar sheet towards the marginal channels. Vasoconstriction in the lamellae is likely to provide the fish with a mechanism for matching its respiratory surface area with its respiratory needs, thereby minimising ion-fluxes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...