Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 94 (1993), S. 576-584 
    ISSN: 1432-1939
    Keywords: Blue-green algae ; Green algae ; Carotenoids ; Photoprotection ; Zeaxanthin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The carotenoid composition of 33 species of green algal lichens and 5 species of blue-green algal lichens was examined and compared with that of the leaves of higher plants. As in higher plants, green algal lichen species which were found in both shade and full sunlight exhibited higher levels of the carotenoids involved in photoprotective thermal energy dissipation (zeaxanthin as well as the total xanthophyll cycle pool) in the sun than in the shade. This was particularly true when thalli were moist during exposure to high light, or presumably became desiccated in full sunlight. However, the reverse trend in the carotenoid composition of green algal lichens was also observed in those species which were found predominantly either in the shade or in full sunlight. In this case sun-exposed lichens often possessed lower levels of zeaxanthin and of the components of the xanthophyll cycle than lichens which were found in the shade. In contrast to higher plants, the lichens from all habitats exhibited a relatively high ratio of carotenoids to chlorophylls (more characteristic of sun leaves), very low levels of α-carotene (similar to that found in sun leaves), and a level of β-carotene similar to that found in shade leaves. Zeaxanthin, but not the expoxides of the xanthophyll cycle, was also frequently found in blue-green algal lichens. A trend for increasing levels of zeaxanthin with increasing growth light regime was observed inPeltigera rufescens, the species which was found to occur over the widest range of light environments. The level of zeaxanthin per chlorophylla in these blue-green algal lichens was in a range similar to that per chlorophylla+b in green algal lichens. However, zeaxanthin was also absent in one species,Collema cristatum, in full sunlight. Thus, the zeaxanthin content of the blue-green algal lichens can be similar to that of higher plants, or it can be rather dissimilar, as was also the case in the green algal lichen species. The presence of large amounts of ketocarotenoids in blue-green algal lichens is also noteworthy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...