Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Key words Diuresis/antidiuresis ; Osmotic stress ; HSP25 ; HSP60 ; HSP72 ; HSP73 ; Transcription ; Translation ; Medullary hypertonicity ; Phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The influence of diuresis and antidiuresis on the expression of heat shock proteins (HSP) 25, 60, 72 and 73 in the renal cortex and outer and inner medulla of Wistar rats was analysed. Medullary osmolality was reduced by long-term diuresis (3% sucrose in the drinking water for 3 weeks) and subsequently enhanced by transition to a concentrating state by giving normal drinking water again in combination with deamino-D-arginine vasopressin (dDAVP) for 5 days. Western blot analyses revealed that neither HSP73 nor HSP60 was influenced by any treatment. The HSP72 level in the medulla was markedly reduced (50%) when osmolality was lowered and increased when tonicity was high. RNAse protection assays showed that the effects on HSP72 are parallelled in general by changes in HSP72 mRNA. While levels of HSP25 were not influenced, isoelectric focusing revealed that the degree of phosphorylation of outer and inner medullary HSP25 increased following both treatments. It thus seems that HSP73 and HSP60 are not directly involved in the long-term adaptation to varying medullary osmolalities. The correlation between changes in osmolality and amounts of the major stress-inducible HSP72 in the medulla implies that medullary hypertonicity is stressful for kidney cells. Furthermore, adaptation to pronounced changes in the osmolality of the environment most likely involves phosphorylation of HSP25.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Key words Osmotic stress ; Heat shock proteins (HSP25 ; HSP60 ; HSP72 ; HSP73) ; Intrarenal distribution ; Phosphorylation of HSP25 ; Anaesthesia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The distribution of heat shock proteins (HSP) HSP60, HSP73, HSP72 and HSP25 in the isoosmotic cortex and the hyperosmotic medulla of the rat kidney was investigated using Western blot analysis and immunohistochemistry. HSP73 was homogeneously distributed throughout the whole kidney. The level of HSP60 was high in the renal cortex and low in the medulla. HSP25 and HSP72 were present in large amounts in the medulla. Only low levels of HSP25 and almost undetectable amounts of HSP72 were found in the cortex. HSP25 exists in one nonphosphorylated and several phosphorylated isoforms. Western blot analysis preceded by isoelectric focussing showed that HSP25 predominates in its nonphosphorylated form in the outer medulla but in its phosphorylated form in cortex and inner medulla. Although this intrarenal distribution pattern was not changed during prolonged anaesthesia (thiobutabarbital sodium), a shift from the nonphosphorylated to the phosphorylated isoforms of HSP25 occurred in the medulla. The characteristic intrarenal distribution of the constitutively expressed HSPs (HSP73, HSP60, HSP25) may reflect different states of metabolic activity in the isoosmotic (cortex) and hyperosmotic (medulla) zones of the kidney. The high content of inducible HSP72 in the medulla most likely is a consequence of the osmotic stress imposed upon the cells by the high urea and salt concentrations in the hyperosmotic medullary environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...