Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Cadmium sulfide ; Energy dispersive X-ray analysis ; Heavy metals ; Klebsiella aerogenes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Klebsiella aerogenes forms electron-dense partieles on the cell surface in response to the presence of cadmium ions in the growth medium. These particles ranged from 20 to 200 nm in size, and quantitative energy dispersive X-ray analysis established that they comprise cadmium and sulfur in a 1:1 ratio. This observation leads to the conclusion that the particles are cadmium sulfide crystallites. A combination of atomic absorption spectroscopy, inductively coupled plasma mass spectrometry, and acid-labile sulfide analysis revealed that the total intracellular and bound extracellular cadmium:sulfur ratio is also 1:1, which suggests that the bulk of the cadmium is fixed as extracellular cadmium sulfide. The tolerance of K. acrogenes to cadmium ions and the formation of the cadmium sulfide crystallites were dependent on the buffer composition of the growth medium. The addition of cadmium ions to phosphate-buffered media resulted in cadmium phosphate precipitates that remove the potentially toxic cadmium ions from the growth medium. Electrondense particles formed on the surfaces of bacteria grown under these conditions were a combination of cadmium sulfide and cadmium phosphates. The specific bacterial growth rate in the exponential phase of batch cultures was not affected by up to 2mM cadmium in Tricine-buffered medium, but formation of cadmium sulfide crystallites was maximal during the stationary phase of batch culture. Cadmium tolerance was much lower (10 to 150 μM) in growth media buffered with Tris, Bistris propane, Bes, Tes, or Hepes. These results illustrate the importance of considering medium composition when comparing levels of bacterial cadmium tolerance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Key words Cadmium sulfide ; Energy dispersive X-ray ; analysis ; Heavy metals ; Klebsiella aerogenes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Klebsiella aerogenes forms electron-dense particles on the cell surface in response to the presence of cadmium ions in the growth medium. These particles ranged from 20 to 200 nm in size, and quantitative energy dispersive X-ray analysis established that they comprise cadmium and sulfur in a 1:1 ratio. This observation leads to the conclusion that the particles are cadmium sulfide crystallites. A combination of atomic absorption spectroscopy, induct ively coupled plasma mass spectrometry, and acid-labile sulfide analysis revealed that the total intracellular and bound extracellular cadmium:sulfur ratio is also 1:1, which suggests that the bulk of the cadmium is fixed as extracellular cadmium sulfide. The tolerance of K. aerogenes to cadmium ions and the formation of the cadmium sulfide crystallites were dependent on the buffer composition of the growth medium. The addition of cadmium ions to phosphate-buffered media resulted in cadmium phospha te precipitates that remove the potentially toxic cadmium ions from the growth medium. Electron-dense particles formed on the surfaces of bacteria grown under these conditions were a combination of cadmium sulfide and cadmium phosphates. The specific bacterial growth rate in the exponential phase of batch cultures was not affected by up to 2 mM cadmium in Tricine-buffered medium, but formation of cadmium sulfide crystallites was maximal during the stationary phase of batch culture. Cadmium tolerance was muc h lower (10 to 150 μM) in growth media buffered with Tris, Bistris propane, Bes, Tes, or Hepes. These results illustrate the importance of considering medium composition when comparing levels of bacterial cadmium tolerance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...