Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 89 (1994), S. 964-968 
    ISSN: 1432-2242
    Keywords: RAPD ; Wheat ; Hessian fly ; DNA markers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Hessian fly [Mayetiola destructor (Say)] is a major pest of wheat (Triticum aestivum L.) and genetic resistance has been used effectively over the past 30 years to protect wheat against serious damage by the fly. To-date, 25 Hessian fly resistance genes, designated H1 to H25, have been identified in wheat. With near-isogenic wheat lines differing for the presence of an individual Hessian fly resistance gene, in conjunction with random amplified polymorphic DNA (RAPD) analysis and denaturing gradient-gel electrophoresis (DGGE), we have identified a DNA marker associated with the H9 resistance gene. The H9 gene confers resistance against biotype L of the Hessian fly, the most virulent biotype. The RAPD marker cosegregates with resistance in a segregating F2 population, remains associated with H9 resistance in a number of different T. aestivum and T. durum L. genetic backgrounds, and is readily detected by either DGGE or DNA gel-blot hybridization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 94 (1997), S. 419-423 
    ISSN: 1432-2242
    Keywords: Key words Wheat ; RAPD ; Marker-assisted selection ; Hessian fly
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The pyramiding of genes that confer race- or biotype-specific resistance has become increasingly attractive as a breeding strategy now that DNA-based marker-assisted selection is feasible. Our objective here was to identify DNA markers closely linked to genes in wheat (Triticum aestivum L.) that condition resistance to Hessian fly [Mayetiola destructor (Say)]. We used a set of near-isogenic wheat lines, each carrying a resistance gene at 1 of 11 loci (H3, H5, H6, H9, H10, H11, H12, H13, H14, H16 or H17) and developed by backcrossing to the Hessian fly-susceptible wheat cultivar ‘Newton’. Using genomic DNA of these 11 lines and ‘Newton’, we have identified 18 randomly amplified polymorphic DNA (RAPD) markers linked to the 11 resistance genes. Seven of these markers were identified by denaturing gradient gel electrophoresis and the others by agarose gel electrophoresis. We confirmed linkage to the Hessian fly resistance loci by cosegregation analysis in F2 populations of 50–120 plants for each different gene. Several of the DNA markers were used to determine the presence/absence of specific Hessian fly resistance genes in resistant wheat lines that have 1 or possibly multiple genes for resistance. The use of RAPD markers presents a valuable strategy for selection of single and combined Hessian fly resistance genes in wheat improvement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...