Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chicester [u.a.] : Wiley-Blackwell
    Journal of Molecular Recognition 7 (1994), S. 221-226 
    ISSN: 0952-3499
    Keywords: RecA protein ; DNA-protein interaction ; Linear dichroism ; Intercalation ; ATP ; Homologous recombination ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In an attempt to understand the role of ATP as a cofactor at the interaction of the RecA protein with DNA, we have studied the orientation geometries of the cofactor analogs adenosine 5′-O-(3-thiotriphosphate) (ATPγS) and guanosine 5′-O-(3-thiotriphosphate) (GTPγS) in RecA-DNA complexes using flow linear dichroism spectroscopy. Both cofactors promote the formation of RecA-DNA complexes of similar structure as judged from similar orientations of DNA bases. The DNA orientation was probed through the dichroism of the long-wavelength absorption of a DNA analog, poly(dεA). In this way differences between the dichroic spectra of the ATPγS-RecA-DNA and GTPγS-RecA-DNA complexes, observed in the shorter-wavelength region, are related to orientation at variations of the cofactor chromophores. The results show that the guanine plane of GTPγS is oriented parallel with the principal axis of the complex in contrast to the more perpendicular orientation of the DNA bases. This observation directly excludes the possibility that the cofactor could be intercalated between the DNA bases. This observation directly excludes the possibility that the cofactor could be intercalated between the DNA bases. The orientation of the adenine base of ATPγS, which may be similar to that of guanine of GTPγS albeit not exactly the same, is also inconsistent with intercalation. The possibility that the cofactor bound to the protein could be intercalated in DNA had been speculated from the observation that some DNA intercalators can induce RecA binding to DNA in the absence of cofator. There are probably no direct interactions between the cofator and the DNA bases and the role of the cofactor is probably related to interaction with RecA and a modification of protein conformation.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...