Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mechanics of time-dependent materials 2 (1998), S. 103-111 
    ISSN: 1573-2738
    Keywords: dynamic response ; Epon 828 ; T-403 ; epoxy ; high-strain rate test ; Hopkinson bar ; material modeling ; strain-rate effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The uniaxial compressive mechanical response of an epoxy, Epon 828/T-403, was experimentally, measured over a strain-rate range of 1.1 × 10-4 to 5.2 × 103 s-1. A modified split Hopkinson pressure bar was employed to apply dynamic compressive loading over a very short time of ∼ 0.2 millisecond, whereas an MTS was used to conduct quasi-static experiments at a duration of 0.2 to 2,000 seconds to determine strain-rate sensitivity. The experimental results show that the compressive strength of the epoxy increases with increasing strain rate until adiabatic heating offsets the strain-rate hardening. A constitutive model based on the Johnson–Cook model was constructed to describe the stress-strain behavior of the epoxy at the strain rates tested. A Ludwig equation was modified to model the stress-strain behavior at a reference strain rate, which included elastic deformation, a yield-like peak, and a strain-softening region. A hyperbolic tangent function provided a good description of the strain-rate effect. The material constants in this proposed model were determined using the experimental results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental mechanics 40 (2000), S. 1-6 
    ISSN: 1741-2765
    Keywords: Soft materials ; Hopkinson bar ; quartz crystal ; dynamic behavior ; high strain rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A dynamic experimental technique that is three orders of magnitude as sensitive in stress measurement as a conventional split Hopkinson pressure bar (SHPB) has been developed. Experimental results show that this new method is effective and reliable for determining the dynamic compressive stress-strain responses of materials with low mechanical impedance and low compressive strengths, such as elastomeric materials and foams at high strain rates. The technique is based on a conventional SHPB. Instead of a surface strain gage mounted on the transmission bar, a piezoelectric force transducer was embedded in the middle of the transmission bar of a high-strength aluminum alloy to directly measure the weakly transmitted force profile from a soft specimen. In addition, a pulse-shape technique was used for increasing the rise time of the incident pulse to ensure stress equilibrium and homogeneous deformation in the low-impedance and low-strength specimen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...