Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1995-1999  (3)
  • Human  (3)
  • 1
    ISSN: 1432-1106
    Schlagwort(e): Scopolamine ; Memory ; Positron emission tomography ; Human
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Scopolamine, a muscarinic antagonist, impairs memory performance in both humans and animals. In this study, repeated measurements of regional cerebral blood flow (rCBF) were made in normal volunteers whilst performing auditory verbal memory tasks, before and after the administration of scopolamine (0.4 mg s.c.) or placebo. Compared to placebo, scopolamine increased blood flow in the lateral occipital cortex bilaterally and the left orbitofrontal region. Scopolamine decreased rCBF in the region of the right thalamus, the precuneus and the right and left lateral premotor areas. Scopolamine attenuated memory-task-induced increases of rCBF in the left and right prefrontal cortex and the right anterior cingulate region. These data suggest that acute blockade of cholinergic neurotransmission affects diverse brain areas, including components of the visual and motor systems, and, in addition, modulates memory task activations at distinct points in a distributed network for memory function.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-1106
    Schlagwort(e): Key words Tremor ; Electromyogram ; Muscle vibration ; Frequency analysis ; Human
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  The output from the central nervous system to muscles may be rhythmic in nature. Previous recordings investigating peripheral manifestations of such rhythmic activity are conflicting. This study attempts to resolve these conflicts by employing a novel arrangement to measure and correlate rhythms in tremor, electromyographic (EMG) activity and muscle vibration sounds during steady index finger abduction. An elastic attachment of the index finger to a strain gauge allowed a strong but relatively unfixed abducting contraction of the first dorsal interosseous (1DI). An accelerometer attached to the end of the finger recorded tremor, surface electrodes over 1DI recorded EMG signals and a heart-sounds monitor placed over 1DI recorded vibration. This arrangement enabled maintenance of a constant overall muscle contraction strength while still allowing measurement of the occurrence of tremulous movements of the finger. Ten normal subjects were studied with the index finger first extended at rest and then contracting 1DI to abduct the index finger against three different steady forces up to 50% of maximal voluntary contraction (MVC). Power spectral analysis of tremor, EMG activity and muscle vibration signals each revealed three frequency peaks occurring together at around 10 Hz, 20 Hz and 40 Hz. Coherence analysis showed that the same three peaks were present in the three signals. Phase analysis indicated a fixed time lag of tremor behind EMG of around 6.5 ms. This is compared with previous measurements of electromechanical delay. Other experiments indicated that the three peaks were of central nervous origin. Introducing mechanical perturbations or extra loading to the finger and making recordings under partial anaesthesia of the hand and forearm demonstrated preservation of all the peaks, suggesting that they did not originate from mechanical resonances or peripheral feedback loop resonances. It is concluded that, at least for a small hand muscle, there exist not one but a number of separate peak frequencies of oscillation during active contraction, and that these oscillations reflect synchronization of motor units at frequencies determined within the central nervous system. It is proposed that the multiple oscillations may be a means of frequency coding of motor commands.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 121 (1998), S. 1-6 
    ISSN: 1432-1106
    Schlagwort(e): Key words EMG ; Finger ; Typing ; Force ; Neural control ; Human
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  A single keystroke during touch-typing is a rapid, goal-directed motion of the fingertip which consists of two single-direction movements. The neural control and the role of the finger extrinsic musculature during typing have not yet been explained. The fingertip motion and force, and the intramuscular electromyographic (EMG) activity (fine-wire) of the index finger extrinsic musculature were measured during touch-typing by ten experienced typists. The motions and forces were repeatable qualitatively across keystrokes. A three-burst EMG pattern was observed during a single keystroke. The three bursts were: (1) a burst of extensor activity lifted the finger before the keystroke; (2) a burst of flexor activity followed while the fingertip was moving downward; and (3) a second burst of extensor activity occurred as the fingertip reached the end of key travel. The timing of the third burst suggests the role of the extensors is to remove the fingertip from the keyswitch rather than stop the downward motion of the finger. The collision with the end of key travel stops the downward finger motion. The timing of the finger flexor EMG activity, burst 2, suggests that the flexor contraction principally overcomes the activation force of the keyswitch rather than accelerates the finger downward as expected.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...