Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words Gd(III) complexes ; Contrast agents ; Proton relaxation enhancement ; Magnetic resonance imaging ; Human serum albumin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The non-covalent interaction between human serum albumin (HSA) and DOTA-like Gd(III) complexes containing hydrophobic benzyloxymethyl (BOM) substituents has been thoroughly investigated by measuring the solvent proton relaxation rates of their aqueous solutions. The binding association constants (K A) to HSA are directly related to the number of hydrophobic substituents present on the surface of the complexes. Furthermore, an estimation of ΔH° and ΔS° has been obtained by the temperature dependence of K A. Assays performed with the competitor probes warfarin and ibuprofen established that the complexes interact with HSA through two nearly equivalent binding sites located in the subdomains IIA and IIIA of the protein. Strong relaxation enhancements, promoted by the formation of slowly tumbling paramagnetic adducts, have been measured at 20 MHz for complexes containing two and three hydrophobic substituents. The macromolecular adduct with the latter species has a relaxivity of 53.2±0.7 mM–1 s–1, which represents the highest value so far reported for a Gd(III) complex. The temperature dependence of the relaxivity for the paramagnetic adducts with HSA indicates long exchange lifetimes for the water molecules dipolarly interacting with the paramagnetic centre. This is likely to be related to the formation, upon hydrophobic interaction of the complexes with HSA, of a clathrate-like, second-coordination-sphere arrangement of water molecules. Besides affecting the dissociative pathway of the coordinated water molecule, this water arrangement may itself significantly contribute to enhancement of the bulk solvent relaxation rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Key words Gd(III) complex ; MRI contrast agent ; Water exchange rate ; Human serum albumin ; Relaxometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  A novel heptacoordinating ligand consisting of a thirteen-membered tetraazamacrocycle containing the pyridine ring and bearing three methylenephosphonate groups (PCTP-[13]) has been synthesized. Its Gd(III) complex displays a remarkably high longitudinal water proton relaxivity (7.7 mM–1 s–1 at 25  °C, 20 MHz and pH 7.5) which has been accounted for in terms of contributions arising from (1) one water molecule bound to the metal ion, (2) hydrogen-bonded water molecules in the second coordination sphere, or (3) water molecules diffusing near the paramagnetic chelate. Variable-temperature 17O-NMR transverse relaxation data indicate that the residence lifetime of the metal-bound water molecule is very short (8.0 ns at 25  °C) with respect to the Gd(III) complexes currently considered as contrast agents for magnetic resonance imaging. Furthermore, GdPCTP-[13] interacts with human serum albumin (HSA), likely through electrostatic forces. By comparing water proton relaxivity data for the GdPCTP-[13]-HSA adduct, measured as a function of temperature and magnetic field strength, with those for the analogous adduct with GdDOTP (a twelve-membered tetraaza macrocyclic tetramethylenephosphonate complex lacking a metal-bound water molecule), it has been possible to propose a general picture accounting for the main determinants of the relaxation enhancement observed when a paramagnetic Gd(III) complex is bound to HSA. Basically, the relaxation enhancement in these systems arises from (1) water molecules in the hydration shell of the macromolecule and protein exchangeable protons which lie close to the interaction site of the paramagnetic complex and (2) the metal bound water molecule(s). As far as the latter contribution is concerned, the interaction with the protein causes an elongation of the residence lifetime of the metal-bound water molecule, which limits, to some extent, the potential relaxivity enhancement expected upon the binding of the paramagnetic complex to HSA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...