Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: Fertilizer N ; Humus components ; Immobilization-remineralization of N ; Microbial biomass ; N transformations ; N uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A pot experiment was conducted to study the transformations of organic and inorganic N in soil and its availability to maize plants. Inorganic N was in the form of15N labelled ammonium sulphate (As) and15N labelledSesbania aculeata (Sa), a legume, was used as organic N source. Plants utilized 20% of the N applied as As; presence of Sa reduced the uptake to 14%. Only 5% of the Sa-N was taken up by the plants and As had no effect on the availability of N from Sa. Losses of N from As were found to be 40% which were reduced to 20% in presence of Sa. Losses of N were also observed from Sa which increased in the presence of As. Application of As had no effect on the availability of soil or Sa-N. However, more As-N was transported into microbial biomass and humus components in the presence of Sa. Plants derived almost equal amounts of N from different sourcesi.e., soil, Sa and As. However, more As-N was transported into the shoots whereas the major portion of nitrogen in the roots was derived from Sa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Fertilizer15N ; Humus components ; Immobilization-remineralization of N ; Legume residue15N ; Mineralizable N ; N balance ; N transformations ; N uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The availability and turnover in different soil fractions of residual N from leguminous plant material and inorganic fertilizer was studied in a pot culture experiment using wheat as a test crop. Plants utilized 64% of the residual fertilizer N and 20% of the residual legume N. 50–60% of the N taken up by plants was recovered in grain and 4–8% in roots. After harvesting wheat up to 35% and 38% of the residual legume N and fertilizer N, respectively was found in humic compounds. A loss of humus N derived from legume and fertilizer was found during wheat growth but the unlabelled N increased in this fraction. Biomass contained 6% and 8% of the residual legume and fertilizer N, respectively when both were available. The mineralizable component contained upto 28% of both the residual legume and residual fertilizer N. Only a small percentage of the soil N (3–4%) was observed in biomass whereas the mineralizable component accounted for 7–14% of the soil N. In this fraction legume derived N increased during wheat growth whereas unlabelled N increased in both the mineralizable component and microbial biomass. Some loss of N occurred from residual legume and fertilizer N. Nevertheless, a positive total N balance was observed and was attributed to the addition of unlabelled N in the soil-plant system by N2 fixation. The gain in N was equivalent to about 38% of the plant available N in the soil amended with leguminous material. The additional N was concentrated mainly in the mineralizable fraction and microbial biomass, although some addition was also noted in humus fractions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...