Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Key words Antisense ; Heat shock proteins ; Hypertonic stress ; MDCK cells ; Transfection ; Urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Exposure of Madin-Darby canine kidney (MDCK) cells to elevated extracellular NaCl concentrations is associated with increased heat shock protein 72 (HSP72) expression and improved survival of these pretreated cells upon exposure to an additional 600 mM urea in the medium. To establish a causal relationship between HSP72 expression and cell protection against high urea concentrations, two approaches to inhibit NaCl-induced HSP72 synthesis prior to exposure to 600 mM urea were employed. First, the highly specific p38 kinase inhibitor SB203580 was added (100 µM) to the hypertonic medium (600 mosm/kg H2O by NaCl addition, 2 days of exposure), which significantly reduced HSP72 mRNA abundance and HSP72 content. Survival of these cells after a 24-h urea treatment (600 mM) was markedly curtailed compared with appropriate controls. Second, a pcDNA3-based construct, containing 322 bases of the HSP72 open reading frame in antisense orientation and the geneticine resistance gene, was transfected into MDCK cells. Clones with strong inhibition of HSP72 synthesis and others which express the protein at normal levels (comparable to nontransfected MDCK cells) after heat shock treatment or hypertonic stress were established. When these transformants were subjected to hypertonic stress for 2 days prior to exposure to an additional 600 mM urea for 24 h, cell survival was significantly reduced in those clones in which HSP72 expression was strongly inhibited. These results provide further evidence for the protective function of HSP72 against high urea concentrations in renal epithelial cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Key words MDCK cells ; Hypertonic stress ; NaCl ; Urea ; Organic osmolytes ; Heat shock proteins ; Cell viability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In antidiuresis, the cells of the renal medulla are exposed to high extracellular concentrations of NaCl and urea. Since urea equilibrates with the intracellular compartment and is known to perturb intracellular macromolecules, high urea concentrations may well disturb the structure and function of cell proteins. Two types of organic substances are believed to counteract the adverse effects of high intracellular urea concentrations: specific organic osmolytes of the trimethylamine family [betaine and glycerophosphorylcholine (GPC)], which accumulate in renal medullary cells during prolonged periods of antidiuresis and cytoprotective heat shock proteins (HSPs), the tissue content of two of which (HSPs 27 and 72) is much higher in the inner medulla than in the iso-osmotic renal cortex. To evaluate the contribution of trimethylamines and HSPs to cytoprotection in the presence of high urea concentrations, the effect of HSP induction and osmolyte accumulation prior to exposure to high urea concentrations was examined in Madin-Darby canine kidney (MDCK) cells. Accumulation of organic osmolytes and synthesis of HSP27 and HSP72 was initiated by hypertonic stress (increasing the osmolality of the medium from 290 to 600 mosmol/kg H2O by NaCl addition). Control, non-conditioned cells remained in the isotonic medium for the same period. Upon subsequent exposure to an additional 600 mM urea in the medium for 24 h, 90% of the osmotically conditioned cells but only 15% of non-conditioned cells survived. The HSP72 and trimethylamine contents of the NaCl-conditioned MDCK cells, but not HSP27 content, correlated positively with cell survival. To separate the effects of organic osmolytes and HSP72, chronically NaCl-adapted MDCK cells were returned to isotonic medium for 1 or 2 days, so depleting them of trimethylamine osmolytes. HSP72, with its longer half life, remained elevated. Subsequent exposure of these cells to 600 mM urea in the medium resulted in about 80% survival. These results suggest that in MDCK cells and probably in the renal medulla, HSP72 and perhaps additional protective factors contribute substantially to the resistance against high urea concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...