Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 280 (1995), S. 665-673 
    ISSN: 1432-0878
    Keywords: Key words: Microglia ; Hypothalamo-neurohypophysial system ; Antigen-presenting cells ; Blood-brain barrier ; Phagocytosis ; Immunohistochemistry ; Rat (Long Evans)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The morphology, distribution and immunophenotype of microglia throughout the adult rat hypo- thalamo-neurohypophysial system was examined. Four macrophage-associated antibodies (OX-42, F4/80, ED1 and ED2) were used; the expression of major histocompatibility complex antigens was investigated by use of antibodies against OX-6, OX-17 (MHC class II) and OX-18 (MHC class I). Three distinct types of microglia were identified. The first was located in the magnocellular nuclei; these ’radially branched’ (’ramified’) microglia had round cell bodies and long branched processes, and were strongly immunoreactive only for OX-42. The second was located outside the blood-brain barrier in the median eminence, pituitary stalk and neurohypophysis often close to blood vessels; these ’compact’ microglia had irregular cell bodies and shorter processes, and were strongly labelled by OX-42 and F4/80, weakly labelled by OX-18, and generally unlabelled by ED1, ED2, OX-6 and OX-17. The third type was found in small numbers throughout the system at the surface of the nervous tissue or around blood vessels; these ’perivascular’ microglia were elongated cells with no branching processes, and were strongly labelled by ED1, ED2, OX-18, OX-6, OX-17 and F4/80 antibodies but showed variable OX-42 immunoreactivity. Cells in a perivascular location were heterogeneous with respect to their immunophenotype. The presence in the normal adult rat hypothalamo-neurohypophysial system of MHC class-II molecules (OX-6 and OX-17) on a sub-set of perivascular microglia suggests that these cells are capable of presenting antigen to T lymphocytes. The microglia, which lie on either side of the blood-brain barrier, are well placed to facilitate interaction between the immune and neuroendocrine systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 280 (1995), S. 665-673 
    ISSN: 1432-0878
    Keywords: Microglia ; Hypothalamo-neurohypophysial system ; Antigen-presenting cells ; Blood-brain barrier ; Phagocytosis ; Immunohistochemistry ; Rat (Long Evans)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The morphology, distribution and immunophenotype of microglia throughout the adult rat hypothalamo-neurohypophysial system was examined. Four macrophage-associated antibodies (OX-42, F4/80, ED1 and ED2) were used; the expression of major histocompatibility complex antigens was investigated by use of antibodies against OX-6, OX-17 (MHC class II) and OX-18 (MHC class I). Three distinct types of microglia were identified. The first was located in the magnocellular nuclei; these ‘radially branched’ (‘ramified’) microglia had round cell bodies and long branched processes, and were strongly immunoreactive only for OX-42. The second was located outside the blood-brain barrier in the median eminence, pituitary stalk and neurohypophysis often close to blood vessels; these ‘compact’ microglia had irregular cell bodies and shorter processes, and were strongly labelled by OX-42 and F4/80, weakly labelled by OX-18, and generally unlabelled by ED1, ED2, OX-6 and OX-17. The third type was found in small numbers throughout the system at the surface of the neurvous tissue or around blood vessels; these ‘perivascular’ microglia were elongated cells with no branching processes, and were strongly labelled by ED1, ED2, OX-18, OX-6, OX-17 and F4/80 antibodies but showed variable OX-42 immunoreactivity. Cells in a perivascular location were heterogeneous with respect to their immunophenotype. The presence in the normal adult rat hypothalamo-neurohypophysial system of MHC class-II molecules (OX-6 and OX-17) on a sub-set of perivascular microglia suggests that these cells are capable of presenting antigen to T lymphocytes. The microglia, which lie on either side of the blood-brain barrier, are well placed to facilitate interaction between the immune and neuroendocrine systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Hypothalamo-neurohypophysial system ; Supraoptic nucleus ; Neurosecretory granules ; Neurophysins ; Lysosomes ; Immuno-gold techniques ; Double-immunolabeling ; Monoclonal antibodies ; Murids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Ultrastructural post-embedding immuno-gold techniques were applied to the supraoptic nucleus and the neurohypophysis of mice and rats. The primary antibodies were three different monoclonal antineurophysins, used in protein A-gold and immunoglobulin-gold procedures. Conventional plastic embedding as well as hydrophilic media (L.R. White) were used; non-osmicated and osmicated tissues were immunolabeled; sodium metaperiodate oxidation was used, but was not essential for immunolabeling. Vasopressinergic and oxytocinergic NSGs were identified by the specific immunoreactivity of their respective neurophysins on adjacent thin sections, and by sequential double labeling on the same thin section using two different antibodies associated with gold probes of different diameters. The immunoidentification indicates that vasopressin NSGs can additionally be differentiated as larger, with more electron-dense matrix, and susceptible to damage by sodium metaperiodate. The only organelles consistently labeled were neurosecretory granules (NSGs), either intact or within lysosomal configurations. Some lysosomal dense bodies were immunoreactive even when discrete NSGs were no longer morphologically recognisable within them. Labeled NSGs were located within neuronal cell bodies, along axonal shafts and within axonal swellings and endings; occasionally immunoreactive NSGs were observed within synaptic boutons. Labeling intensity was semi-quantitatively gauged by counting gold particles in relation to numbers of NSGs per axonal varicosity. The precise localisation achieved with particulate immunogold labeling surpasses that previously obtained with diffuse electron-dense immunoreaction products.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...