Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-7217
    Keywords: IGF-II ; breast cancer ; immunohistochemistry ; in situ hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Insulin-like growth factor-II (IGF-II) is a potent mitogen for a variety of cell types and is considered an important regulator of breast cancer growth. In this study, we analyzed IGF-II mRNA and protein expression in a series of 80 cases of invasive breast cancer. Seventy-five cases produced informative results for IGF-II mRNA expression, and were scored on an arbitrary scale. Two cases (2.6%) had no significant IGF-II mRNA expression. 35 cases (46.7%) expressed low levels of IGF-II mRNA, 20 cases (26.7%) moderate IGF-II mRNA, while 18 (24%) expressed high levels of IGF-II message. Generally, IGF-II mRNA was expressed in the smooth muscle walls of blood vessels and ducts, as well as in the stroma tightly adjacent to and surrounding tumor epithelium. IGF-II mRNA content was also directly related to the amount of the stroma within the tumor (p〈0.05). In 10 cases (13.3%) IGF-II mRNA was detected in the stroma of normal lobules. Fifty-six out of 75 were positive for IGF-II immunostaining. Again, protein staining was generally observed in the smooth muscle of both blood vessels and ducts, as well as in the stroma surrounding tumor epithelium. In normal lobules and ducts the IGF-II protein was detected in the myoepithelium. Unequivocal IGF-II protein staining was seen in tumor epithelium in only three cases. The results of our study demonstrate that, in breast cancer, IGF-II mRNA is expressed in the smooth muscle and stromal components in the majority of invasive breast cancers. IGF-II expression correlates positively with the amount of stromal tissue present within a tumor. This suggests that IGF-II may have an important growth regulatory effect on breast tumor epithelium through paracrine pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Breast cancer research and treatment 22 (1992), S. 21-29 
    ISSN: 1573-7217
    Keywords: autocrine growth factors ; hormone dependence ; IGF-I ; IGF-II ; paracrine growth factors ; stromal cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The insulin-like growth factors (IGFs) are mitogens for many cancer cell types. In breast cancer cells, IGF-I and IGF-II have both been shown to stimulate cell proliferation. However, IGF-I mRNA has not been found in human breast cancer cell lines, making it unlikely that IGF-I is commonly expressed as an autocrine growth factor for breast cancer cells. Nevertheless, IGF-I mRNA can be detected in breast cancer tissue samples, and in situ hybridization studies have shown that the message originates from the stromal cells adjacent to normal lobules. IGF-II, on the other hand, has been detected in some breast cancer cell lines. In the estrogen receptor positive cell line T47-D, IGF-II mRNA was induced by estradiol. Furthermore, transfection of an IGF-II expression vector into a previously estrogen-dependent cell line resulted in hormone independent growth. Thus, IGF-II can be expressed as an autocrine growth factor in some breast cancers and its expression may, in part, result in hormone independence. Finally, stromal cells obtained from breast tissues showed that IGF-I was commonly expressed in fibroblasts derived from non-malignant biopsy specimens, while IGF-II mRNA was detected in fibroblasts adjacent to malignant tissue. These studies suggest that IGF-II expression may be important in both autocrine and paracrine regulation of breast cancer cell growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...