Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Acta neuropathologica 81 (1991), S. 503-509 
    ISSN: 1432-0533
    Schlagwort(e): Rosenthal fibers ; Ubiquitin ; Immunohistochemistry ; Glial fibrillary acidic protein ; Vimentin
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Seventeen intracerebral gliomas containing Rosenthal fibers (RF) were studied by an immunoperoxidase method for localization of ubiquitin (UB), glial fibrillary acidic protein (GFAP), desmin and vimentin (VIM). The majority of RF showed an immunohistochemically negative core surrounded by a ring of overlapping reactions for UB, GFAP and VIM. Many RF were entirely negative for UB and intermediate filaments (IF). Immunoelectron microscopic lozalization of UB and GFAP was performed on seven selected tumors. UB was found in all RF and on IF in the proximity of RF. GFAP reaction was localized on astrocytic IF, including those trapped within RF, and within the granular component of some RF. In contrast to the light microscopic studies, neither GFAP-nor UB-negative RF were found on immunoelectron microscopy. VIM reaction on IF and a few RF was demonstrated in one tumor processed at low temperature into Lowicryl; it was much weaker than that for GFAP. Many cells with RF contained lysosome-like inclusions with material displaying electron density similar to adjacent RF; few of these inclusions were reactive for UB. It is concluded that RF formation is associated with ubiquitination of astrocytic IF. GFAP-and VIM-immunoreactive IF and products of their disintegration contribute to RF material. It is also suggested that the lysosomal system of astrocytes partially degrades RF.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-0533
    Schlagwort(e): Monoclona gammopathy ; Neuropathy ; Demyelination ; Immunoelectron microscopy
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary A sural nerve biopsy from a patient with benign monoclonal IgM kappa gammopathy and sensory-motor demyelinative neuropathy, revealed marked loss of myelinated fibers and focal axonal degeneration as well as widespread demyelination and remyelination with onion-skin formation. Almost all meylinated fibers displayed characteristic widening of the myelin lamellae as well as excessive thickness and/or exuberant outfoldings of myelin, reminiscent of that seen in tomaculous neuropathy. Many endoneurial capillaries were lined by fenestrated endothelium, indicating breakdown of a normal blood-nerve barrier. The endoneurium contained large amounts of extracellular proteinaceous material. Immunofluorescence and immunoelectron microscopy performed on the nerve of the patient, demostrated selective deposition of IgM kappa gammaglobulin, exclusively in the areas of splittings of the myelin lamellae. Schwann cells contained cytoplasmic myelin debris labelled with IgM kappa only. In the indirect immunofloorescence and immunoelectron microscopy, serum of the patient reacted with the whole thickness of compact peripheral myelin of a normal human nerve. There was no immunoreactivity with the central myelin, Schwannoma cells, glial cells, axons or neurons. Demonstration of the selective presence of monoclonal IgM in widened lamellae of myelinated fibers, as well as bound to the internalized myelin debris in Schwann cells and macrophages, indicates a pathogenetic role of monoclonal paraprotein in myelin injury. Demyelination is promoted by development of endothelial fenestrations in the endoneurial capillaries and breakdown of the blood-nerve barrier.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...