Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Key words Calbindin ; Hertwig’s epithelial root sheath ; Epithelial rest of Malassez ; Preodontoblast ; Periodontal fibroblast ; Immunohistochemistry ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  The present study was undertaken to examine the localization of calbindin D28k (CB)-like immunoreactivity (-LI) during the root formation of the rat molar. In the adult rat, CB-LI was detected in some of the cells of the epithelial rest of Malassez at the bifurcational region and in certain cells between the root dentin and cementum at the apical region. These cells had indented nuclei and many tonofilaments, and cementocytes lacked CB-LI. Moreover, CB-LI was observed in the periodontal fibroblasts in the alveolar half of the apical region. During root formation, the cells in the Hertwig’s epithelial root sheath (HERS) lacked CB-LI, but most fragmented cells along the root surface began to express CB-LI when HERS was disrupted. Preodontoblasts and odontoblasts at the apical portion of the root also showed CB-LI. After the formation of cellular cementum, the CB-immunoreactive (-IR) cells were entrapped between the root dentin and cementum in the apical portion of the root. The number of CB-IR cells at the root surface decreased gradually, while that between the root dentin and cementum increased. The fibroblasts in the periodontal ligament began to express CB-LI after commencement of the occlusion, and the number and the staining intensity of CB-IR fibroblasts increased gradually with the passage of time. The present results suggest that CB may play an important role in the survival of the epithelial cells, in the cellular responses of periodontal fibroblasts against mechanical forces caused by the occlusion, and in the initial mineralization by the odontoblasts through the regulation of intracellular Ca2+ concentration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Key words Calbindin D28k ; Circumvallate papilla ; Taste buds ; Development ; Degeneration ; Regeneration ; Immunohistochemistry ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  The distribution of calbindin D28k (CB)-like immunoreactivity (-LI) in the circumvallate papilla (CVP) was examined during development and regeneration following bilateral crush injury to the glossopharyngeal nerve in the rat. In the adult CVP, CB-like immunoreactive (-IR) nerve fibers were observed in the subgemmal region and some penetrated into the taste buds. CB-LI was also detected in the cytoplasm of the spindle-shaped gustatory cells in the lower half of the trench epithelium, which contained numerous synaptic vesicles and bundles of intermediate filaments. These CB-IR gustatory cells made synapse-like contacts with CB-IR nerve terminals. Some CB-IR nerve terminals made contacts with the gustatory cells negative for CB-LI. At least three developmental stages were defined with regard to the developmental changes in the distribution of CB-LI: (1) Stage I (embryonic day (E) 18–postnatal day (P)5): CB-IR nerve fibers appeared in the lamina propria just beneath the newly-formed CVP at E18, but the gustatory epithelium of the CVP contained no CB-IR structures. Taste buds with taste pores appeared at P1. (2) Stage II (P5–10): thin CB-IR nerve fibers began entering the trench epithelium, but no CB-IR cells were observed. (3) Stage III (P10–adult): in addition to the intragemmal and perigemmal CB-IR nerve fibers, very few CB-IR cells appeared in the taste buds around P10, and their numbers increased progressively. The changes in the distribution of taste buds and CB-LI following glossopharyngeal nerve injury were similar to those observed during development. On post-operative day (PO) 4, the taste buds and CB-IR cells decreased markedly in number. These CB-IR cells became round in shape, and the number of CB-IR nerve fibers decreased markedly. On PO8, both taste buds and CB-IR cells disappeared completely. The regenerated taste buds were first observed on PO12, increased rapidly in number by PO20, and increased slowly thereafter. CB-IR nerve fibers accumulated at the subgemmal region and began penetrating into the trench wall epithelium around PO16. CB-IR cells appeared between PO20 and PO24, and their numbers increased progressively and reached the normal level on PO40. The topographical localizations of the taste buds and CB-IR cells during development and regeneration were comparable to those of normal animals. The delay of the time courses for appearance of CB-IR nerve fibers and CB-IR cells compared to the appearance of taste buds during development and regeneration suggests that CB in the gustatory epithelium may participate in the survival of the taste bud cells rather than in the induction of the taste buds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Key words Circumvallate papilla ; Growth-associated protein 43 (GAP-43) ; Protein gene product 9.5 (PGP 9.5) ; Taste buds ; Immunohistochemistry ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The distribution and development of growth-associated protein 43 (GAP-43)-like immunoreactivity (-LI) in the rat circumvallate papilla (CVP) were compared to those of protein gene product 9.5 (PGP 9.5)-LI. In the adult, thick GAP-43-like immunoreactive (-IR) structures gathered densely in the subgemmal region. Some of these further penetrated the apical epithelium and trench wall epithelium. At least two types of GAP-43-IR structures were recognized; taste bud-related and non-gustatory GAP-43-IR neural elements. Immunoelectron microscopy revealed that GAP-43-LI was localized predominantly in the Schwann cells, and a few axons displayed GAP-43-LI in the lamina propria. In the trench epithelium, GAP-43-LI was detected in the cytoplasmic side of the axonal membrane. Some intragemmal GAP-43-IR axons made synaptic-like contacts with taste bud cells. At least four developmental stages were defined on the basis of the changes in distribution of GAP-43-LI. In stage I [embryonic day (E) 16–17] GAP-43-IR structures accumulated at the lamina propria just beneath the newly-formed circumvallate papilla. In stage II (E18–19) GAP-43-IR nerve fibers began to penetrate the apical epithelium. In stage III [E20-postnatal day (P) 0] GAP-43-IR nerve fibers first appeared in the trench wall epithelium. Penetration of GAP-IR nerve fibers occurred in the inner trench wall epithelium first, and then in the outer trench wall epithelium. In stage IV (P1-) the distribution of GAP-43-LI was similar to that observed in the adult; but the density of GAP-43-LI was much higher than in adults. PGP 9.5-LI showed a similar distribution pattern to that of GAP-43-LI, except for round-shaped cells in the apical epithelium at the late embryonic stages, and in taste bud cells and intralingual ganglionic cells which lacked GAP-43-LI. The similarities in distribution patterns of GAP-43-LI and PGP 9.5-LI during the development and mature circumvallate papilla suggest that GAP-43 may be a key neuronal molecule for induction and maintenance of the taste buds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...