Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 304 (1978), S. 95-99 
    ISSN: 1432-1912
    Keywords: Taurine ; Monoamines ; Inhibitory neurotransmitters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Taurine, a putative inhibitory neurotransmitter, was injected in various doses intracerebroventricularly to conscious rats via pre-implanted polythene cannulas. The formation of DOPA and 5-hydroxytryptophan (5-HTP) in various brain regions was investigated by measuring the accumulation of these monoamine precursors induced within 30 min by the intraperitoneal injection of 3-hydroxybenzyl hydrazine HCl (NSD 1015, 100 mg/kg), an inhibitor of the aromatic L-amino acid decarboxylase readily penetrating into the brain. DIPA formation, but not 5-HTP formation was significantly enhanced by taurine in dose-related manner in all brain regions studied, indicating an increased synthesis of both dopamine and noradrenaline. Dopamine depletion induced by α-methyltyrosine was significantly retarded by taurine, whereas noradrenaline depletion tended to be enhanced. Endogenous levels of dopamine were increased, whereas the following brain constituents were unchanged: tyrosine, tryptophan, noradrenaline, 5-HT and 5-hydroxyindoleacetic acid. In the exoeriments with NSD 1015, a dose-related decrease in rectal temperature and in motility was observed after taurine treatment, as compared to treatment with the decarboxylase inhibotor alone. Systemic parenteral administration of taurine caused no significant changes in brain monoamines, body temperature or behaviour but decreased the heart noradrenaline levels. The data indicate that taurine, which apparently has to be given intracerebroventricularly in order to reach the brain in sufficient amounts, causes inhibition of firing in central dopamine neurons but has the opposite effect on noradrenaline neurons, perhaps also peripherally, whereas 5-HT neurons appear to be unaffected. In addition, taurine appears to interfere with motor behaviour and temperature regulation, possibly via effects on catecholaminergic systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...