Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Constructive approximation 9 (1993), S. 59-82 
    ISSN: 1432-0940
    Keywords: Primary 41A55 ; 65D30 ; 65D32 ; Secondary 42C05 ; Integration rules on (−∞, ∞) ; Interpolatory integration rules ; Convergence ; Distribution of points ; Weak convergence ; Potential theory ; Gauss quadrature ; Nevai-Ullmann distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Letw be a “nice” positive weight function on (−∞, ∞), such asw(x)=exp(−⋎x⋎α) α〉1. Suppose that, forn≥1, $$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} } f(x_{jn} )$$ is aninterpolatory integration rule for the weightw: that is for polynomialsP of degree ≤n-1, $$I_n [P]: = \int\limits_{ - \infty }^\infty {P(x)w(x)dx.} $$ Moreover, suppose that the sequence of rules {I n} n=1 t8 isconvergent: $$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - \infty }^\infty {f(x)w(x)dx} $$ for all continuousf:R→R satisfying suitable integrability conditions. What then can we say about thedistribution of the points {x jn} j=1 n ,n≥1? Roughly speaking, the conclusion of this paper is thathalf the points are distributed like zeros of orthogonal polynomials forw, and half may bearbitrarily distributed. Thus half the points haveNevai-Ullmann distribution of order α, and the rest are arbitrarily distributed. We also describe the possible distributions of the integration points, when the ruleI n has precision other thann-1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Constructive approximation 9 (1993), S. 41-58 
    ISSN: 1432-0940
    Keywords: Primary 41A55 ; 65D30 ; 65D32 ; Secondary 42C05 ; Integration rules ; Interpolatory integration rules ; Convergence ; Distribution of points ; Weak convergence ; Potential theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Suppose that, forn≥1, $$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} f(x_{jn} )} $$ is aninterpolatory integration rule of numerical integration, that is, $$I_n [f]: = \int\limits_{ - 1}^1 {P(x)dx,} degree(P)〈 n.$$ Suppose, furthermore, that, for each continuousf:[−1, 1]→R, $$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - 1}^1 {f(x)dx.} $$ What can then be said about thedistribution of the points $$\{ x_{jn} \} _{1 \leqslant j \leqslant n} $$ n→∞? In all the classical examples they havearcsin distribution. More precisely, if $$\mu _n : = \frac{1}{n}\sum\limits_{j = 1}^n {\delta _{x_{jn} } } $$ is the unit measure assigning mass 1/n to each pointx jn, then, asn→∞ $$d\mu _n (x)\mathop \to \limits^* \upsilon (x)dx: = \frac{1}{\pi }(\arcsin x)'dx = \frac{{dx}}{{\pi (1 - x^2 )^{1/2} }}.$$ Surprisingly enough, this isnot the general case. We show that the set of all possible limit distributions has the form 1/2(v(x) dx+dv(x)), wherev is an arbitrary probability measure on [−1, 1]. Moreover, given any suchv, we may find rulesI n,n≥1, with positive weights, yielding the limit distribution 1/2v(x) dx+dv(x)). We also consider generalizations when the quadratures have precision other thann−1, and when we place a weight σ in our integral.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Numerical algorithms 3 (1992), S. 55-65 
    ISSN: 1572-9265
    Keywords: Interpolatory integration rules ; convergent integration rules ; orthogonal polynomials ; varying weights ; equilibrium distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract We investigate which types of asymptotic distributions can be generated by the knots of convergent sequences of interpolatory integration rules. It will turn out that the class of all possible distributions can be described exactly, and it will be shown that the zeros of polynomials that are orthogonal with respect to varying weight functions are good candidates for knots of integration rules with a prescribed asymptotic distribution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...