Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 21 (1992), S. 117-128 
    ISSN: 1432-1017
    Keywords: Ion channel ; Peptaibol ; Channel forming peptide ; Planar bilayer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The zervamicins (Zrv) are a family of 16 residue peptaibol channel formers, related to the 20 residue peptaibol alamethicin (Alm), but containing a higher proportion of polar sidechains. Zrv-1113 forms multi-level channels in planar lipid (diphytanoyl phosphatidylcholine) bilayers in response to cis positive voltages. Analysis of the voltage and concentration dependence of macroscopic conductances induced by Zrv-IIB suggests that, on average, channels contain ca. 13 peptide monomers. Analysis of single channel conductance levels suggests a similar value. The pattern of successive conductance levels is consistent with a modified helix bundle model in which the higher order bundle are distorted within the plane of the bilayer towards a “torpedo” shaped cross-section. The kinetics of intro-burst switching between adjacent conductance levels are shown to be approximately an order of magnitude faster for Zrv-IIB than for Alm. The channel forming properties of the related naturally occurring peptaibols, Zrv-Leu and Zrv-IC, have also been demonstrated, as have those of the synthetic apolar analogue Zrv-Al-16. The experimental studies on channel formation are combined with the known crystallographic structures of Zrv-Al-16 and Zrv-Leu to develop a molecular model of Zrv-II3 channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...