Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Theoretical chemistry accounts 93 (1996), S. 199-210 
    ISSN: 1432-2234
    Schlagwort(e): Rotational isomer ; SCRF ; Furan ; Thiophine ; Carbonyl derivatives
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Summary The relative stabilities of syn- and anti-isomers of 2-substituted furan and thiophene carbonyl derivatives are investigated by theab initio MO method. The energy differences between the rotamers are 1–3 kcal mol−1 but the barriers to rotation are ca. 10 kcal mol−1 so that free rotational mode is predicted to be a rather difficult process. Application of the self-consistent reaction field (SCRF) method to account for the solvent effect indicates that the isomer with a higher dipole moment (syn) is favored in solution. An electron withdrawing 2-substituent favors syn-isomers for furan carbonyls in contrast to thiophene carbonyls for which anti-isomers are favored. These trends are ascribable to a decrease in electrostatic repulsive and attractive interactions, respectively, in the syn forms of furan and thiophene carbonyls. Contribution of non-bonded repulsive interaction in the anti-isomer is important for the relative stability of the syn-isomer of furan carbonyl derivative. Solvent effects due to higher dielectric continuum are small on the absolute values of energy differences but can reverse the order of stability of the two isomers due to a greater stability acquired by an isomer (syn) with higher dipole moment in solution. The major factor determining stability, or instability, of syn-isomer is a repulsive electrostatic interaction between the two oxygen atoms for furan carbonyls and an attractive electrostatic interaction between the sulfur and oxygen atoms for thiophene carbonyls.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Theoretica chimica acta 93 (1996), S. 199-210 
    ISSN: 0040-5744
    Schlagwort(e): Key words: Rotational isomer ; SCRF ; Furan ; Thiophine ; Carbonyl derivatives
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Summary.  The relative stabilities of syn- and anti-isomers of 2-substituted furan and thiophene carbonyl derivatives are investigated by the ab initio MO method. The energy differences between the rotamers are 1–3 kcal mol-1 but the barriers to rotation are ca. 10 kcal mol-1 so that free rotational mode is predicted to be a rather difficult process. Application of the self-consistent reaction field (SCRF) method to account for the solvent effect indicates that the isomer with a higher dipole moment (syn) is favored in solution. An electron withdrawing 2-substituent favors syn-isomers for furan carbonyls in contrast to thiophene carbonyls for which anti-isomers are favored. These trends are ascribable to a decrease in electrostatic repulsive and attractive interactions, respectively, in the syn forms of furan and thiophene carbonyls. Contribution of non-bonded repulsive interaction in the anti-isomer is important for the relative stability of the syn-isomer of furan carbonyl derivative. Solvent effects due to higher dielectric continuum are small on the absolute values of energy differences but can reverse the order of stability of the two isomers due to a greater stability acquired by an isomer (syn) with higher dipole moment in solution. The major factor determining stability, or instability, of syn-isomer is a repulsive electrostatic interaction between the two oxygen atoms for furan carbonyls and an attractive electrostatic interaction between the sulfur and oxygen atoms for thiophene carbonyls.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...