Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • Key words: Osteoblast — Differentiation — Epidermal growth factor receptor — Bone matrix.  (1)
Material
Years
  • 2000-2004  (1)
Year
Keywords
  • Key words: Osteoblast — Differentiation — Epidermal growth factor receptor — Bone matrix.  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 67 (2000), S. 141-150 
    ISSN: 1432-0827
    Keywords: Key words: Osteoblast — Differentiation — Epidermal growth factor receptor — Bone matrix.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. The role of epidermal growth factor receptors (EGF-R) in osteogenic cell differentiation was investigated using preosteoblastic MC3T3-E1 (MC3T3) cells and osteoblast-like ROS 17/2.8 (ROS) cells. When cultured in the presence of β-glycerophosphate (GP) and ascorbic acid (AA), MC3T3 cells underwent spontaneous differentiation into osteoblasts which was confirmed as they expressed osteoblast markers such as alkaline phosphatase (ALP), bone sialoprotein (BSP) and osteocalcin (OC). Interestingly, the number of EGF-binding sites decreased during their differentiation into osteoblasts, and the osteogenic protein-1 (OP-1) treatment, which accelerated their differentiation, lowered the number of EGF-binding sites even further. On the other hand, ROS cells with high expression levels of osteoblast markers and no EGF-R, after being transfected with human EGF-R cDNA (EROS cells), expressed numerous EGF-binding sites as well as EGF-R mRNA and protein; in the process, they ceased to express osteoblast markers, indicating their dedifferentiation into osteoprogenitor cells. Both MC3T3 and EROS cells showed increased cell growth in response to EGF, whereas ROS cells did not. These results imply that the EGF/EGF-R system in osteogenic cells has a crucial function in osteoblast phenotype suppression and osteogenic cell proliferation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...