Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1619-7089
    Keywords: Key words: Striatum ; Single-photon emission tomography ; Dopamine neuron ; 6-OH-dopamine ; Autoradiography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Technetium-99m is the most commonly used radionuclide in routine nuclear medicine imaging procedures. Development of 99mTc-labeled receptor-specific imaging agents for studying the central nervous system is potentially useful for evaluation of brain function in normal and disease states. A novel 99mTc-labeled tropane derivative, [99mTc]TRODAT-1, which is useful as a potential CNS dopamine transporter imaging agent, was evaluated and characterized. After i.v. injection into rats, [99mTc]TRODAT-1 displayed specific brain uptake in the rat striatal region (striatum-cerebellum/cerebellum ratio 1.8 at 60 min), where dopamine neurons are concentrated. The specific striatal uptake could be blocked by pretreating rats with a dose of competing dopamine transporter ligand, β-CIT (or RTI-55, i.v., 1 mg/kg). However, the specific striatal uptake of [99mTc]TRODAT-1 was not affected by co-injection of excess free ligand (TRODAT-1, up to 200 μg per rat) or by pretreating the rats with haloperidol (i.v., 1 mg/kg). The specific uptake in striatal regions of rats that had prior 6-hydroxydopamine lesion in the substantia nigra area showed a dramatic reduction. The radioactive material recovered from the rat striatal homogenates at 60 min after i.v. injection of [99mTc]TRODAT-1 showed primarily the original compound (〉95%), a good indication of in vivo stability in brain tissue. Similar and comparable organ distribution patterns and brain regional uptakes of [99mTc]TRODAT-1 were obtained for male and female rats. Ex vivo autoradiography results of rat brain sections further confirmed the high uptake and retention of [99mTc]TRODAT-1 in the striatal region. In vitro binding studies measuring the affinity to dopamine transporters for the free ligand, TRODAT-1, and a nonradioactive rhenium derivative, Re-TRODAT-1, showed K i values of 9.7 nM and 14.1 nM, respectively. Behavioral studies in rats using the free ligand, TRODAT-1 and Re-TRODAT-1 indicated that, unlike other tropane derivatives, they displayed no effect on locomotor activity, suggesting low toxicity. These results strongly support the conclusions that this novel 99mTc radioligand binds selectively to dopamine transporters in the brain and that is is potentially useful for in vivo assessment of the loss of dopamine neurons in Parkinson’s and other neurodegenerative diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1619-7089
    Keywords: Striatum ; Single-photon emission tomography ; Dopamine neuron ; 6-OH-dopamine ; Autoradiography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Technetium-99m is the most commonly used radionuclide in routine nuclear medicine imaging procedures. Development of99mTc-labeled receptor-specific imaging agents for studying the central nervous system is potentially useful for evaluation of brain function in normal and disease states. A novel99mTc-labeled tropane derivative, [99mTc]TRODAT 1, which is useful as a potential CNS dopamine transporter imaging agent, was evaluated and characterized. After i.v. injection into rats, [99mTc]TRODAT-1 displayed specific brain uptake in the rat striatal region (striatum-cerebellum/cerebellum ratio 1.8 at 60 min), where dopamine neurons are concentrated. The specific striatal uptake could be blocked by pretreating rats with a dose of competing dopamine transporter ligand, ß-CIT (or RTI-55, i.v., 1 mg/kg). However, the specific striatal uptake of [99mTc]TRODAT-] was not affected by co-injection of excess free ligand (TRODAT-1, up to 200 μg per rat) or by pretreating the rats with haloperidol (i.v., 1 mg/kg). The specific uptake in striatal regions of rats that had prior 6-hydroxydopamine lesion in the substantia nigra area showed a dramatic reduction. The radioactive material recovered from the rat striatal homogenates at 60 min after i.v. injection of [99mTc]TRODAT-1 showed primarily the original compound (〉95%), a good indication of in vivo stability in brain tissue. Similar and comparable organ distribution patterns and brain regional uptakes of [99mTc]TRODAT-1 were obtained for male and female rats. Ex vivo autoradiography results of rat brain sections further confirmed the high uptake and retention of [99mTc]TRODAT-1 in the striatal region. In vitro binding studies measuring the affinity to dopamine transporters for the free ligand, TRODAT-1, and a nonradioactive rhenium derivative, Re-TRODAT-1, showed K i values of 9.7 nM and 14.1 nM, respectively. Behavioral studies in rats using the free ligand, TRODAT-1 and Re-TRODAT-1 indicated that, unlike other tropane derivatives, they displayed no effect on locomotor activity, suggesting low toxicity. These results strongly support the conclusions that this novel99mTc radioligand binds selectively to dopamine transporters in the brain and that is is potentially useful for in vivo assessment of the loss of dopamine neurons in Parkinson's and other neurodegeneralive diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1619-7089
    Keywords: Key words: Serotonin transporter ; Selective serotonin reuptake inhibitor ; 5-Hydroxytryptamine ; Baboon ; Single-photon emission tomography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. A new radioligand, 5-iodo-2-[[2–2-[(dimethylamino)methyl]phenyl]thio]benzyl alcohol ([123I]IDAM), has been developed for selective single-photon emission tomography (SPET) imaging of SERT. In vitro binding studies suggest a high selectivity of IDAM for SERT (K i=0.097 nM), with considerably lower affinities for norepinephrine and dopamine transporters (NET K i= 234 nM and DAT K i〉10 µM, respectively). In this study the biodistribution of SERT in the baboon brain was investigated in vivo using [123I]IDAM and SPET imaging. Dynamic sequences of SPET scans were performed on three female baboons (Papio anubis) after injection of 555 MBq of [123I]IDAM. Displacing doses (1 mg/kg) of the selective SERT ligand (+)McN5652 were administered 90–120 min after injection of [123I]IDAM. Similar studies were performed using a NET inhibitor, nisoxetine, and a DAT blocker, methylphenidate. After 60–120 min, the regional distribution of tracer within the brain reflected the characteristic distribution of SERT, with the highest uptake in the midbrain area (hypothalamus, raphe nucleus, substantia nigra), and the lowest uptake in the cerebellum (an area presumed free of SERT). Peak specific binding in the midbrain occurred at 120 min, with a ratio to the cerebellum of 1.80±0.13. At 30 min, 85% of the radioactivity in the blood was metabolite. Following injection of a competing SERT ligand, (+)McN5652, the tracer exhibited rapid washout from areas with high concentrations of SERT (dissociation rate constant in the midbrain, averaged over three baboons, k off=0.025±0.002 min–1), while the cerebellar activity distribution was undisturbed (washout rate 0.0059± 0.0003 min–1). Calculation of tracer washout rate pixel-by-pixel enabled the generation of parametric images of the dissociation rate constant. Similar studies using nisoxetine and methylphenidate had no effect on the distribution of [123I]IDAM in the brain. These results suggest that [123I]IDAM is suitable for selective SPET imaging of SERT in the primate brain, with high contrast, favorable kinetics, and negligible binding to either NET or DAT.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...