Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Key words:In vivo strain — External loading — Four-point bending — Tibia.  (1)
  • Rat tibia  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Calcified tissue international 63 (1998), S. 442-449 
    ISSN: 1432-0827
    Schlagwort(e): Key words:In vivo strain — External loading — Four-point bending — Tibia.
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin , Physik
    Notizen: Abstract. We investigated the bone response to external loading in C57BL/6J and C3H/HeJ mice, both breeds with low and high bone density, respectively. An in vivo tibial four-point bending device previously used for application of measured external loads in rats was adapted for mice. It delivered a uniform medio-lateral bending moment to the region of the tibia located 1–5.5 mm proximal to the tibio-fibula junction. The right legs of six C57BL/6J [low bone density (LBD)] and C3H/HeJ [high bone density (HBD)] mice were externally loaded in the device for 36 cycles/day at 2 Hz, 6 days/week for 2 weeks at 9.3 ± 0.9 N force, inducing estimated lateral periosteal surface compressive strains of 5121 ± 1128 με in C3H/HeJ (HBD) mice (n = 6), significantly higher than the estimated 3988 ± 820 με in C57BL/6J mice (n = 6) (mean ± SD). In addition, C3H/HeJ HBD mice (n = 11) were externally sham (pad pressure or no bending) loaded in the device for 36 cycles/day at 2 Hz, 3 days/week for 3 weeks at 9.3 ± 0.9 N force. Calcein injections for bone labeling were given at the 10th and 3rd days before sacrifice. At the end of the experiment, all mice were killed and both tibiae were removed, fixed, embedded, and cross-sectioned through the loaded region. Both tibiae were measured for marrow area (Ma.Ar), cortical area (Ct.Ar), total area (Tt.Ar), cross-sectional moment of inertia (CSMI), and periosteal and endocortical woven bone surface (Wo.B/BS), single-labeled surface (sLS), double-labeled surface (dLS), and total formation surface (FS/BS). Differences in all variables due to breed and loading (both bending and sham-bending) were tested by two-way analysis of variance (ANOVA) (P 〈 0.05). Ma.Ar, Tt.Ar, and CSMI were greater in C57BL/6J (LBD) than in C3H/HeJ (HBD) mice. Periosteal and endocortical woven bone and formation surface were increased significantly more by loading (bending) in C57BL/6J than in C3H/HeJ mice. Periosteal woven bone response due to sham-bending or sham-loading was significantly lower than due to bending loads in the C3H/HeJ mice. We conclude that the bone response to external loading is greater in LBD mice than in HBD mice. The high bone density of C3H/HeJ (HBD) mice is related to breed-specific factors other than the response to loading.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Calcified tissue international 55 (1994), S. 473-478 
    ISSN: 1432-0827
    Schlagwort(e): Strain ; Rat tibia ; c-fos ; Alkaline phosphatase ; Osteocalcin
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin , Physik
    Notizen: Abstract Although mechanical forces regulate bone mass and morphology, little is known about the signals involved in that regulation. External force application increases periosteal bone formation by increasing surface activation and formation rate. In this study, the early tibial periosteal response to external loads was compared between loaded and nonloaded contralateral tibia by examining the results of blot hybridization analyses of total RNA. To study the impact of external load on gene expression, RNA blots were sequentially hybridized to cDNAs encoding the protooncogene c-fos, cytoskeletal protein β-actin, bone matrix proteins alkaline phosphatase (ALP), osteopontin (Op), and osteocalcin (Oc), and growth factors insulin-like growth factor I (IGF-I) and transforming growth factor-β (TGF-β). The rapid yet transient increase in levels of c-fos mRNA seen within 2 hours after load application indirectly suggests that the initial periosteal response to mechanical loading is cell proliferation. This is also supported by the concomitant decline in levels of mRNAs encoding bone matrix proteins ALP, Op, and Oc, which are typically produced by mature osteoblasts. Another early periosteal response to mechanical load appeared to be the rapid induction of growth factor synthesis as TGF-β and IGF-I mRNA levels were increased in the loaded limb with peak levels being observed 4 hours after loading. These data indicate that the acute periosteal response to external mechanical loading was a change in the pattern of gene expression which may signal cell proliferation. The altered pattern of gene expression observed in the present study supports previous evidence of increased periosteal cell proliferation seen both in vivo and in vitro following mechanical loading.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...