Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Disease resistance ; Oryza species ; Interspecific hybridization ; Xanthomonas oryzae pv. oryzae ; Pyricularia grisea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Oryza minuta J. S. Presl ex C. B. Presl is a tetraploid wild rice with resistance to several insects and diseases, including blast (caused by Pyricularia grisea) and bacterial blight (caused by Xanthomonas oryzae pv. oryzae). To transfer resistance from the wild species into the genome of cultivated rice (Oryza sativa L.), backcross progeny (BC1, BC2, and BC3) were produced from interspecific hybrids of O. sativa cv ‘IR31917-45-3-2’ (2n=24, AA genome) and O. minuta Acc. 101141 (2n=48, BBCC genomes) by backcrossing to the O. sativa parent followed by embryo rescue. The chromosome numbers ranged from 44 to 47 in the BC1 progeny and from 24 to 37 in the BC2 progeny. All F1 hybrids were resistant to both blast and bacterial blight. One BC1 plant was moderately susceptible to blast while the rest were resistant. Thirteen of the 16 BC2 progeny tested were resistant to blast; 1 blast-resistant BC2, plant 75-1, had 24 chromosomes. A 3 resistant: 1 susceptible segregation ratio, consistent with the action of a major, dominant gene, was observed in the BC2F2 and BC2F3 generations. Five of the BC1 plants tested were resistant to bacterial blight. Ten of the 21 BC2 progeny tested were resistant to Philippine races 2, 3, and 6 of the bacterial blight pathogen. One resistant BC2, plant 78-1, had 24 chromosomes. The segregation of reactions of the BC2F2, BC2F3, and BC2F4 progenies of plant 78-1 suggested that the same or closely linked gene(s) conferred resistance to races 2, 3, 5, and 6 of the bacterial blight pathogen from the Philippines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words PEPCP ; Pith promoter ; cryIA (b) ; Rice ; YSB
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The truncated chimeric Bt gene, cryIA(b) of Bacillus thuringiensis, driven by two constitutive promoters, 35S from CaMV and Actin-1 from rice, and two tissue-specific promoters, pith tissue and pepcarboxylase (PEPC) for green tissue from maize, was introduced into several varieties of rice (indica and japonica) by microprojectile bombardment and protoplast systems. A total of 1800 putative transgenic Bt rice plants could be produced. Southern analysis revealed that more than 100 independently transformed plants could be confirmed for integration of the cryIA(b) gene. High levels of CryIA(b) proteins were obtained in the green tissue (leaves and stem) of many plants using the PEPC promoter. There was little difference in Bt protein level in leaves and stems from transgenic plants with the 35 S or Actin-1 promoter. Out of 800 Southern-positive plants that were bioassayed, 81 transgenic plants showed 100% mortality of insect larvae of the yellow stem borer (Scirpophaga incertulas). The transgene, cryIA(b), driven by different promoters showed a wide range of expression (low to high) of Bt proteins stably inherited in a number of rice varieties with enhanced yellow stem borer resistance. This first report of transgenic indica Bt rice plants with the PEPC or pith promoter either alone or in combination should provide a better strategy for providing rice plants with protection against insect pest resistance, minimizing the expression of the CryIA(b) protein in seeds and other tissues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...