Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Glycine max  (1)
  • Key words Resin composite  (1)
  • 1
    ISSN: 1436-3771
    Schlagwort(e): Key words Resin composite ; Light ; Radiation effects ; Hardness ; Elasticity
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  The plasma arc curing light Apollo 95 E (DMDS) is compared to conventional curing lights of different radiation intensities (Vivalux, Vivadent, 250 mW/cm2; Spectrum, DeTrey, 550 mW/cm2; Translux CL, Kulzer, 950 mW/cm2). For this purpose, photoactivated resin composites were irradiated using the respective curing lights and tested for flexural strength, modulus of elasticity (ISO 4049), and hardness (Vickers, Knoop) 24 h after curing. For the hybrid composites containing only camphoroquinone (CQ) as a photoinitiator (Herculite XRV, Kerr; Z100, 3 M), flexural strength, modulus of elasticity, and surface hardness after plasma curing with two cycles of 3 s or with the step-curing mode were not significantly lower than after 40 s of irradiation using the high energy (Translux CL) or medium energy conventional light (Spectrum). However, irradiation by only one cycle of 3 s failed to produce adequate mechanical properties. Similar results were observed for the surface hardness of the CQ containing microfilled composite (Silux Plus, 3 M), whereas flexural strength and modulus of elasticity after plasma curing only reached the level of the weak conventional light (Vivalux). For the hybrid composites containing both CQ and photoinitiators absorbing at shorter wavelengths (370–450 nm) (Solitaire, Kulzer; Definite, Degussa), plasma curing produced inferior properties mechanical than conventional curing; only the flexural strength of Solitaire and the Vickers hardness of Definite reached levels not significantly lower than those observed for the weak conventional light (Vivalux). The suitability of plasma arc curing for different resin composites depends on which photoinitiators they contain.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1615-6102
    Schlagwort(e): Actin ; Glycine max ; Microfilaments ; Soybean
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Filamentous structures were observed when cytoplasmic extracts of various tissues of soybean plants and seedlings were examined by electron microscopy. Three main lines of evidence indicate that these structures represented microfilaments derived from the soybean tissues: a) the diameter of the filaments was estimated to be 6–7 nm; b) the addition of rabbit heavy meromyosin resulted in the decoration of the filaments, yielding characteristic arrow-head patterns; and c) ATP reversed the decoration of the filaments by heavy meromyosin. When the various anatomical parts of soybean plants and seedlings were compared for the presence of microfilaments, the root tips and radicles showed the highest frequency while the petioles and cotyledons yielded no observable filaments. In order to substantiate these findings, a quantitative radioimmunoassay was developed using rabbit antibodies directed against calf thymus actin. These studies demonstrated that the concentration of actin in extracts of the root tip was 15-fold higher than in those of the petiole and leaf. Similar comparisons of various parts of soybean seedlings showed that the radicle was rich in actin. These results suggest that actin filaments are found predominantly in the subterranean parts of plants.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...