Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words Rhizobium  (1)
  • 1
    ISSN: 1617-4623
    Keywords: Key words Rhizobium ; Nodulation ; Nod factors ; Acyl transfer ; nodA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  In the biosynthesis of lipochitin oligosaccharides (LCOs) the Rhizobium nodulation protein NodA plays an essential role in the transfer of an acyl chain to the chitin oligosaccharide acceptor molecule. The presence of nodA in the nodABCIJ operon makes genetic studies difficult to interpret. In order to be able to investigate the biological and biochemical functions of NodA, we have constructed a test system in which the nodA, nodB and nodC genes are separately present on different plasmids. Efficient nodulation was only obtained if nodC was present on a low-copy-number vector. Our results confirm the notion that nodA of Rhizobium leguminosarum biovar viciae is essential for nodulation on Vicia. Surprisingly, replacement of R. l. bv. viciae nodA by that of Bradyrhizobium sp. ANU289 results in a nodulation-minus phenotype on Vicia. Further analysis revealed that the Bradyrhizobium sp. ANU289 NodA is active in the biosynthesis of LCOs, but is unable to direct the transfer of the R. l. bv. viciae nodFE-dependent multi-unsaturated fatty acid to the chitin oligosaccharide acceptor. These results lead to the conclusion that the original notion that nodA is a common nod gene should be revised.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...