Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 199 (1999), S. 519-527 
    ISSN: 1432-0568
    Keywords: Key words Morphology ; Embryo culture ; Lipid droplet ; Development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The ultrastructure of bovine morulae and blastocysts developed from in vitro-matured and -fertilized oocytes in a serum-supplemented medium was compared with that of morulae and blastocysts collected non-surgically from superovulated cows. In the in vivo-derived morulae, two characteristic cells types could be identified by the electron-density of their cytoplasm and by their ultrastructural features. One type appeared light in color with low electron-dense cytoplasm. These cells were located in the peripheral layer of the cluster of blastomeres, possessed numerous cellular organelles such as mitochondria and Golgi apparatus and had microvilli projecting into the perivitelline space. The other cell type was distinguished by cytoplasm that stained more densely than that of the lighter-appearing cells. The darker-appearing cells generally possessed fewer organelles than the lighter cells, but many lysosome-like structures were present in the cytoplasm. The in vitro-developed morulae also contained two types of cells similar to those observed in the in vivo morulae. However, most of the in vitro-developed cells possessed numerous lipid droplets and contained fewer lysosome-like structures than the cells of the in vivo-derived morulae. The blastocysts, both in vivo and in vitro, showed a clear differentiation of trophoblast cells and inner cell mass (ICM)-cells. In the in vivo-derived blastocyst, the apical membrane of trophoblast cells was covered with large, numerous microvilli and well-developed junctional complexes were observed. Lipid droplets were present in the cytoplasm of trophoblast and ICM-cells but were not abundant. In vitro-developed blastocysts showed less well-developed junctional complexes between trophoblast cells, less well-developed apical microvilli on the trophoblast cells, and contained large numbers of lipid droplets. This accumulation of lipid droplets was higher in the trophoblast cells than in the ICM-cells. The zonae pellucidae of in vitro-developed embryos were thinner than that of the in vivo-derived embryos. This study demonstrates conspicuous differences in the ultrastructural features between the in vivo-derived and in vitro-developed embryos, suggesting that the ultrastructure may reflect the various physiological anomalies observed in previous studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key words Abortive gap repair ; Antirrhinum majus ; Nested transposons ; Structural conservation ; Tam3
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Most transposon families consist of heterogeneous copies with varying sizes. In contrast, the Tam3 copies in Antirrhinum majus are known to have exceptionally conserved structures of uniform size. Gap repair has been reported to be involved in the structural alteration of copies from several transposon families. In this study, we have asked whether or not gap repair has affected Tam3 copies. Five Tam3 copies carrying aberrant sequences were selected from 40 independent Tam3 clones and their sequences were analyzed. Two of the five copies contain insertions in the Tam3 sequence. These two insertions, designated Tam356 and Tam661, are typical transposon-like sequences, which have terminal inverted repeats and cause target site duplication. These nested transposons were obviously associated with transpositional events, and did not originate from the gap-repair process. The remaining three copies had lost large parts of the Tam3 sequence. We could not find any relationship between the deletions of Tam3 sequence in the three copies and gap repair. PCR analysis of a Tam3 excision site in the nivea recurrence:Tam3 mutant also showed that most of the repair events after the Tam3 excision involved end-joining. In addition to the results obtained here, among the other clones isolated, we could not find any of the internally deleted copies that comprise a major part of other transposon families. All of these data suggest that some feature of the Tam3 structure suppresses the structural alterations that are otherwise generated during the gap repair process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...