Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 277 (1999), S. 701-707 
    ISSN: 1435-1536
    Keywords: Key words Critical micelle concentration ; Thermodynamics properties ; Tetradecyltrimethylammonium bromide ; Ethylene glycol ; water mixtures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The aggregation behaviour of tetradecyltrimethylammonium bromide in ethylene glycol–water mixtures across a range of temperatures has been investigated by electrical conductivity measurements. The critical micelle concentration (cmc) and the degree of counterion dissociation of micelles were obtained at each temperature from plots of differential conductivity, (κ/c) T , P , versus the square root of the total concentration of the surfactant. This procedure not only enables us to determine the cmc values more precisely than the conventional method, based on plots of conductivity against total concentration of surfactant, but also allows straightforward determination of the limiting molar conductance and the molar conductance of micellar species. The equilibrium model of micelle formation was applied to obtain the thermodynamics parameters of micellization. Only small differences have been observed in the standard molar Gibbs free energies of micellization over the temperature range investigated. The enthalpy of micellization was found to be negative in all cases, and it showed a strong dependence on temperature in the ethylene glycol poor solvent system. An enthalpy–entropy compensation effect was observed for all the systems, but whereas the micellization of the surfactant in the solvent system with 20 wt% ethylene glycol seems to occur under the same structural conditions as in pure water, in ethylene glycol rich mixtures the results suggest that the lower aggregation of the surfactant is due to the minor cohesive energy of the solvent system in relation to water.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...