Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Key wordsKluyveromyces lactis ; Mitochondrial ribosomal protein ; ρo-lethality ; L23
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Kluyveromyces lactis nuclear gene, MRP-L23, encodes a polypeptide of 155 amino acids that shares 70% and 43% identity to the ribosomal proteins L23 and L13 of Saccharomyces cerevisiae and Escherichia coli. The deduced protein, designated KlL23, is a likely component of the large subunit of mitochondrial ribosomes as it can complement the respiratory deficient phenotype of a S. cerevisiae mrp-L23 mutant. As in S. cerevisiae, KlMRP-L23 is essential for respiratory growth of K. lactis because disruption of the gene in a “petite-positive” strain carrying a ρo-lethality suppressor atp mutation rendered cells unable to grow on a non-fermentable carbon source. However, in contrast to S. cerevisiae, disruption of MRP-L23 in wild type K. lactis is lethal. Meiotic segregants of K. lactis with a disrupted MRP-L23 allele form microcolonies with cell numbers varying from 32 to 300. These data clearly indicate an essential role of mitochondrial protein synthesis for viability of the petite-negative yeast K. lactis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Key wordsKluyveromyces lactis ; Mitochondrial genome integrity ; F1-ATPase δ-subunit gene ; ATPδ -disruption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Kluyveromyces lactis is a petite-negative yeast that does not form viable mitochondrial genome-deletion mutants (petites) when treated with DNA-targeting drugs. Loss of mtDNA is lethal for this yeast but mutations at three loci termed MGI, for mitochondrial genome integrity, can suppress this lethality. The three loci encode the α-, β- and γ-subunits of mitochondrial F1-ATPase. In this study we report the isolation and characterization of the KlATPδ gene encoding the δ-subunit of F1-ATPase. The deduced protein contains 158 amino acids showing 72% identity to the protein from Saccharomyces cerevisiae and a putative mitochondrial targeting sequence of 23 amino acids. Disruption of the gene causes cells to become respiratory deficient while the introduction of ATPδ from S. cerevisiae restores growth on glycerol. Cells with a disrupted ATPδ gene, like strains with disruptions of α-, β- and γ-F1-subunits, do not produce petite mutants when treated with ethidium bromide. However, unlike strains with disruptions in the three largest F1-subunits, disruption of ATPδ in the presence of some mgi alleles does not abolish the Mgi– phenotype. By contrast, elimination of ATPδ in other mgi strains removes resistance to ethidium bromide and ρ 0 mutants are not formed. Hence the ATPδ subunit of F1-ATPase, while not mandatory for a Mgi– phenotype, aids some mgi alleles in suppressing ρ 0 lethality.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Key wordsKluyveromyces lactis ; MGI genes ; F1F0-ATP synthase ; F1 assembly ; F0 subunits
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Specific mgi mutations in the α, β or γ subunits of the mitochondrial F1-ATPase have previously been found to suppress ρ0 lethality in the petite-negative yeast Kluyveromyces lactis. To determine whether the suppressive activity of the altered F1 is dependent on the F0 sector of ATP synthase, we isolated and disrupted the genes KlATP4, 5 and 7, the three nuclear genes encoding subunits b, OSCP and d. Strains disrupted for any one, or all three of these genes are respiration deficient and have reduced viability. However a strain devoid of the three nuclear genes is still unable to lose mitochondrial DNA, whereas a mgi mutant with the three genes inactivated remains petite-positive. In the latter case, ρ0 mutants can be isolated, upon treatment with ethidium bromide, that lack six major F0 subunits, namely the nucleus-encoded subunits b, OSCP and d, and the mitochondrially encoded Atp6, 8 and 9p. Production of ρ0 mutants indicates that an F1-complex carrying a mgi mutation can assemble in the absence of F0 subunits and that suppression of ρ0 lethality is an intrinsic property of the altered F1 particle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...