Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Keywords: β-galactosidase; thermophilic fungus; Rhizomucor; extracellular; solid state fermentation  (1)
  • adsorption  (1)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 19 (1997), S. 239-245 
    ISSN: 1476-5535
    Keywords: Keywords: β-galactosidase; thermophilic fungus; Rhizomucor; extracellular; solid state fermentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A thermostable β-galactosidase was produced extracellularly by a thermophilic Rhizomucor sp, with maximum enzyme activity (0.21 U mg−1) after 4 days under submerged fermentation condition (SmF). Solid state fermentation (SSF) resulted in a nine-fold increase in enzyme activity (2.04 U mg−1). The temperature range for production of the enzyme was 38–55°C with maximum activity at 45°C. The optimum pH and temperature for the partially purified enzyme was 4.5 and 60°C, respectively. The enzyme retained its original activity on incubation at 60°C up to 1 h. Divalent cations like Co2+, Mn2+, Fe2+ and Zn2+ had strong inhibitory effects on the enzyme activity. The K m and V max for p-nitrophenyl-β- D-galactopyranoside and o-nitrophenyl-β - D-galactopyranoside were 0.39 mM, 0.785 mM and 232.1 mmol min−1 mg−1 respectively. The K m and V max for the natural substrate lactose were 66.66 μM and 0.20 μ mol min−1 mg−1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-8272
    Keywords: XAD-16 and NPA-1 ; invertase ; α-glucosidase ; grafting ; ultrasonic irradiation ; adsorption ; desorption ; enrichment factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract In the present work Amberlite® XAD-16 and Indion® NPA-1, Polystyrene Divinylbenzene macroreticular spherical resins, have been evaluated quantitatively as supports for the adsorption and isolation of the yeast proteins and the enzymes, invertase and α-glucosidase. Modification of these supports has been carried out by surface grafting using acrylate polymers to reduce the hydrophobicity and nonspecific adsorption of proteins. Good grafting efficiency, in excess of 90%, has been obtained using ultrasonic irradiation for the surface activation of polystyrene resins. XAD-16 has higher adsorption capacities for the total yeast proteins as well as for both the enzymes, α-glucosidase and invertase, than NPA-1 in its respective native and grafted form. Adsorption capacities of XAD-16 and NPA-1 in their respectivenative and grafted forms for α-glucosidase are higher than the capacities for invertase. Nonspecific adsorption of total proteins has been reduced considerably after the grafting of acrylate polymers on hydrophobic supports. At the same time selectivity for the adsorption of both the enzymes has been enhanced on grafted supports. The overall solid-liquid adsorption mass transfer coefficient values (K l a) estimated for adsorption of invertase on XAD are lower than those for α-glucosidase. Native and grafted resins could be regenerated and reused for adsorption of α-glucosidase for two regeneration cycles studied. Storage stability of invertase and α-glucosidase is the same on native and grafted form of XAD-16 and is more than the enzymes in the free form.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...