Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 57 (1979), S. 993-999 
    ISSN: 1432-1440
    Keywords: Electron microprobe analysis ; Intracellular electrolytes ; Kidney ; Ischaemia ; Elektronenstrahl-Mikroanalyse ; Intrazelluläre Elektrolyte ; Niere ; Ischämie
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to be able to examine the processes involved in transepithelial transport in tissues, which are not composed of a single cell type, methods are required, which permit analysis at a cellular level. The technique of electron microprobe analysis permits the intracellular concentrations of many elements to be determined simultaneously in various portions of the cell. The application of this method to renal cortical tissue has shown that the best estimates of the cytoplasmic concentrations are to be obtained in regions close to the nucleus, farthest from the basolateral infoldings and microvilli, which separate the intracellular environment from the extracellular space. The nuclear concentrations of Na and K do not differ from those in the surrounding cytoplasm, although those of P and C1 are somewhat higher in cytoplasm. The intracellular element concentrations in the different cell types vary somewhat, proximal tubular cells contain higher concentrations of Na and C1 and lower ones of P than distal tubular cells. Following ischaemia, a manoeuvre know to result in a disturbance of intracellular electrolytes, Na was observed to rise and K to fall only in the non-surface cells of kidneys exposed to the air, but in all cells, if the kidneys were kept air-free in an atmosphere of N2. The proximal and distal tubular cells showed a variable resistance to ischaemia, the distal tubular cells being much more resistant. Despite the severity of the electrolyte disturbance following ischaemia, the intracellular composition was completely restored one hour after re-introducing renal blood flow.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 434 (1997), S. 117-122 
    ISSN: 1432-2013
    Keywords: Key words Organic osmolytes ; Urea ; Intracellular electrolytes ; Heat shock proteins ; HSP25 ; HSP72 ; Osmoregulation ; Kidney
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The high content of heat shock proteins (HSPs) 25 and 72 in the hyperosmotic inner medulla of the concentrating kidney has been ascribed to the high NaCl and urea concentrations in this kidney zone. To assess the effects of variations in the composition of solutes in the renal medulla on the intrarenal distribution of HSPs, rats were fed either a high- or low-Na diet for 3 weeks. These diets result in greatly differing urine and inner medullary solute composition. Sodium dodecyl sulphate polyacrylamide gel electrophoresis and Western blot techniques were used to analyse HSP25 and HSP72 in the cortex, outer medulla and inner medulla. In addition, the amounts of organic osmolytes (sorbitol, myo-inositol, betaine and glycerophosphorylcholine) and urea in the tissue were determined by high-performance liquid chromatography. Intra- and extracellular electrolyte concentrations at the papillary tip were measured by electron microprobe analysis. In the high-Na group, urine osmolality was about 1000 mosmol/kg lower than in rats fed a low-Na diet, due to lower urea concentrations. The sum of urine sodium and potassium concentrations, however, did not differ between the two groups. Neither in the outer nor in the inner medulla was the sum of the concentrations of organic osmolytes affected by the dietary treatment. The sum of sodium, potassium and chloride concentrations did not differ between the two experimental groups, neither in the interstitial nor in the intracellular compartments. However, the urea content and the amounts of HSP25 and HSP72 were significantly lower in the inner medulla of the group of rats fed a high-Na diet. Our results suggest that urea participates in the regulation of the medullary levels of the HSPs and that both HSP25 and HSP72 are components of mechanisms protecting medullary cells against the deleterious effects of high urea concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...