Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • Ion channel blockade  (1)
  • Kluyveromyces lactis  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 23 (1994), S. 155-165 
    ISSN: 1432-1017
    Keywords: Alamethicin ; Ion channel blockade ; Planar lipid bilayers ; Polycations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The effects of the peptide polycations salmon protamine (M r = 4332,z = + 21) and poly-l-lysine (M r ≅ 100,00,z ≅ + 775) on ion channels formed by synthetic alamethicin Alm-F30 (one negative charge), natural Alm-F50 (neutral) and phosphorylated Alm-F50 (two negative charges) reconstituted in planar lipid bilayers have been studied at the single channel level. It was observed that both polycations in micromolar concentrations transiently block ion permeation through the channels formed by each alamethicin analogue, although in case of the neutral Alm-F50 to a significantly lesser extent. Poly-l-lysine showed to be more effective than protamine in blocking these channels. If either polycation is present in the cis-compartment, blockade occurs only at cis positive membrane voltages. At constant polycation concentration, dwell times in the blocked state increase when salt concentration is lowered, and decrease at acidic pH with an apparent pK of 4.8. Mean lifetime of blockade events shortens when membrane voltage is increased, which suggests that both polycations may permeate through the oligomeric alamethicin channels if conductance levels are 〉 2. We suggest that blockade is caused by electrostatic binding of a single polycation molecule to the C-terminal channel mouth; in case of Alm-F30, Glu18 has to be considered as the putative binding site. Our results provide further evidence for the barrel-stave model and a parallel orientation of dipole monomers in the channel aggregate, the C-termini facing the membrane side with the more positive membrane potential.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-503X
    Keywords: Yeast ; Kluyveromyces lactis ; recombinant ; phosphoglycerate kinase ; glycolysis ; heterologous protein ; rHSA ; chemostat culture ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Production of recombinant human serum albumin (rHSA) controlled by the constitutive promoter phosphoglycerate kinase was studied in Kluyveromyces lactis. It was governed by both cell concentration and glycolytic flow. The triggering of the fermentation metabolism by unfavourable culture conditions (pH, pO2, D) caused a decrease in the synthesis of the heterologous protein. The highest productivity (75 mg 1-1 per h) and rHSA concentration (62 mg 1-1) were obtained in chemostat culture with a dilution rate of 0·12 h-1 and with 38 g 1-1 dry weight.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...