Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lake Michigan  (1)
  • 1
    ISSN: 1573-0417
    Keywords: Lake Michigan ; paleolimnology ; radiocarbon ; stable isotopes ; ostracodes ; sediments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Preliminary results of a multidisciplinary study of cores in southwestern Lake Michigan suggest that the materials in these cores can be interpreted in terms of both isostatically and climatically induced changes in lake level. Ostracodes and mollusks are well preserved in the Holocene sediments, and they provide paleolimnologic and paleoclimatic data, as well as biogenic carbonate for stable-isotope studies and radiocarbon dating. Pollen and diatom preservation in the cores is poor, which prevents comparison with regional vegetation records. New accelerator-mass spectrometer 14C ages, from both carbon and carbonate fractions, provide basin-wide correlations and appear to resolve the longstanding problem of anomalously old ages that result from detrital organic matter in Great Lakes sediments. Several cores contain a distinct unconformity associated with the abrupt fall in lake level that occurred about 10.3 ka when the isostatically depressed North Bay outlet was uncovered by the retreating Laurentide Ice Sheet. Below the unconformity, ostracode assemblages imply deep, cold water with very low total dissolved solids (TDS), and bivalves have δ 18O (PDB) values as light as — 10 per mil. Samples from just above the unconformity contain littoral to sublittoral ostracode species that imply warmer, higher-TDS (though still dilute) water than that inferred below the unconformity. Above this zone, another interval with δ 18O values more negative than — 10 occurs. The isotopic data suggest that two influxes of cold, isotopically light meltwater from Laurentide ice entered the lake, one shortly before 10.3 ka and the other about 9 ka. These influxes were separated by a period during which the lake was warmer, shallower, but still very low in dissolved solids. One or both of the meltwater influxes may be related to discharge from Lake Agassiz into the Great Lakes. Sedimentation rates appear to have been constant from about 10 ka to 5 ka. Bivalve shells formed between about 8 and 5 ka have δ 18O values that range from-2.3 to-3.3 per mil and appear to decrease toward the end of the interval. The ostracode assemblages and the stable isotopes suggest changes that are climatically controlled, including fluctuating water levels and increasing dissolved solids, although the water remained relatively dilute (TDS 〈 300 mg/l). A dramatic decrease in sedimentation rates occurred at about 5 ka, about the time of the peak of the Nippissing high lake stage. This decrease in sedimentation rate may be associated with a large increase in effective wave base as the lake approached its present size and fetch. A dramatic reduction in ostracode and mollusk abundances during the late Holocene is probably due to this decrease in sedimentation rates, which would result in increased carbonate dissolution. Ostracode productivity may also have declined due to a reduction in bottom-water oxygen caused by increased epilimnion algal productivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...