Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 20 (1995), S. 137-146 
    ISSN: 1432-0789
    Keywords: Larrea tridentata ; Simulated rainfall ; Precipitation exclusion ; Soil drying effects ; Analysis of covariance ; Chihuahan Desert ; Mineralization rate ; Field capacity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Irrigation and rain-out shelters were used to simulate precipitation patterns of wet and dry years in the northern Chihuahuan Desert. Irrigation provided approximately double the long-term average monthly precipitation. Rain was excluded during the wet season, July-October, to simulate a dry year. N net mineralization in laboratory incubations was undectable at calculated water potentials less than -1 MPa. Witb increasing moisture, mineralization gradually rose to the highest observed rates near field capacity. There was no mineralization maximum at moisture contents below field capacity. Irrigation significantly increased the water potential and rainfall exclusion reduced water potentials to less than-8 MPa. The general absence of important irrigation effects may have resulted from the high natural precipitation during the experiment or because irrigation inputs were insufficient to increase microbial activity during very dry periods. Precipitation exclusion reduced ion capture during the warm-wet season. After allowing precipitation inputs to resume, NH 4 + -N capture was increased in the cool-dry seasons of both 1987–1988 and 1988–1989. NH 4 + -N capture more than doubled that predicted from the overall covariance of moisture input and ion capture, suggesting increased availability of N. An unusually hot, dry period in May and June 1989 was followed by a threeto fourfold increase in the warm-wet season NO 3 − +NO2−N capture compared to 1988. These data suggest that short droughts of about 3 months in length (both simulated and natural) increased N availability relative to moisture availability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 82 (1990), S. 18-25 
    ISSN: 1432-1939
    Keywords: Desert shrubs ; Larrea tridentata ; Nitrogen cycling ; Insects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We tested the hypothesis that herbivorous insects on desert shrubs contribute to short-term nitrogen cycling, and increase rates of nitrogen flux from nutrient rich plants. Creosotebush (Larrea tridentata) shrubs were treated with different combinations of fertilizer and water augmentations, resulting in different levels of foliage production and foliar nitrogen contents. Foliage arthropod populations, and nitrogen in canopy dry throughfall, wet throughfall and stemflow were measured to assess nitrogen flux rates relative to arthropod abundances on manipulated and unmanipulated shrubs over a one-month period during peak productivity. Numbers and biomass of foliage arthropods were significantly higher on fertilized shrubs. Sap-sucking phytophagous insects accounted for the greatest numbers of foliage arthropods, but leaf-chewing phytophagous insects represented the greatest biomass of foliage arthropods. Measured amounts of bulk frass (from leaf-chewing insects) were not significantly different among the various treatments. Amounts of nitrogen from dry and wet throughfall and stemflow were significantly greater under fertilized shrubs due to fine frass input from sap-sucking insects. Increased numbers and biomass of phytophagous insects on fertilized shrubs increased canopy to soil nitrogen flux due to increased levels of herbivory and excrement. Nitrogen excreted by foliage arthropods accounted for about 20% of the total one month canopy to soil nitrogen flux, while leaf litter accounted for about 80%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Larrea tridentata ; Leaf demography ; Nutrient resorption ; Nutrient-use efficiency ; Photosynthesis ; Water-use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In the Chihuahuan Desert of southern New Mexico, both water and nitrogen limit the primary productivity of Larrea tridentata, a xerophytic evergreen shrub. Net photosynthesis was positively correlated to leaf N, but only in plants that received supplemental water. Nutrient-use efficiency, defined as photosynthetic carbon gain per unit N invested in leaf tissue, declined with increasing leaf N. However, water-use efficiency, defined as the ratio of photosynthesis to transpiration, increased with increasing leaf N, and thus these two measures of resource-use efficiency were inversely correlated. Resorption efficiency was not significantly altered over the nutrient gradient, nor was it affected by irrigation treatments. Leaf longevity decreased significantly with fertilization although the absolute magnitude of this decrease was fairly small, in part due to a large background of insect-induced mortality. Age-specific gas exchange measurements support the hypothesis that leaf aging represents a redistribution of resources, rather than actual deterioration or declining resource-use efficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 81 (1989), S. 166-175 
    ISSN: 1432-1939
    Keywords: Desert shrubs ; Larrea tridentata ; Nitrogen ; Plant-insect interactions ; Phytophagous insects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We conducted a field study to test the hypothesis that creosotebush (Larrea tridentata) shrubs growing in naturally nutrient-rich sites had better quality foliage and supported greater populations of foliage arthropods than shrubs growing in nutrient-poor sites. Nutrient-rich sites had significantly higher concentrations of soil nitrogen than nutrient-poor sites. Multivariate analysis of variance revealed significant differences between high nutrient and low nutrient shrubs based on a number of structural and chemical characteristics measured. High nutrient shrubs were larger, had denser foliage, greater foliage production, higher concentrations of foliar nitrogen and water, and lower concentrations of foliar resin than low nutrient shurbs. Numbers of foliage arthropods, particularly herbivores and predators, were significantly higher on high nutrient shrubs. Shrub characteristics and foliage arthropod abundances varied considerably from shrub to shrub. Shrub characteristics representing shrub size, foliage density, foliage growth, and foliar nitrogen and water concentrations were positively correlated with arthropod abundances. Foliar resin concentrations were negatively correlated with foliage arthropod abundances. The positive relationship between creosotebush productivity and foliage arthropods is contradictory to the tenet that physiologically stressed plants provide better quality foliage to insect herbivores.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...