Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 57 (1996), S. 471-482 
    ISSN: 1432-0819
    Keywords: Littoral cones ; Mauna Loa ; Volumetric flow rate ; Lava tubes ; Lava-water interaction ; Lava delta ; Bench collapse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Pyroclastic cones along the southwest coast of Mauna Loa volcano, Hawai'i, have a common structure: (a) an early formed circular outer rim 200–400 m in diameter composed mostly of scoria and lapilli, and (b) one or more later-formed inner rims composed almost exclusively of dense spatter. The spatter activity locally fed short lava flows that ponded within the outer rims. Based on various lines of evidence, these cones are littoral in origin: relationships between the cones and associated flows; the degassed nature of the pyroclasts; and (although not unequivocal) the position of the cones relative to known eruptive vent locations on Mauna Loa. Additional support for the littoral interpretation comes from their similarity to (smaller) littoral cones that have been observed forming during the ongoing Kilauea eruption. The structure of these Mauna Loa cones, however, contrasts with that of “standard” Hawaiian littoral cones in that there is (or once was) a complete circle of pyroclastic deposits. Furthermore, they are large even though associated with tubefed pāhoehoe flows instead of 'a'ā. The following origin is proposed: An initial flow of tube-fed pāhoehoe into the ocean built a lava delta with a base of hyaloclastite. Collapse of an inland portion of the active tube into the underlying wet hyaloclastites or a water-filled void allowed sufficient mixing of water and liquid lava to generate strong explosions. These explosions broke through the top of the flow and built up the outer scoria/lapilli rims on the solid carapace of the lava delta. Eventually, the supply of water diminished, the explosions declined in intensity to spattering, and the initial rim was filled with spatter and lava.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 57 (1996), S. 471-482 
    ISSN: 1432-0819
    Keywords: Key words Littoral cones ; Mauna Loa ; Volumetric flow rate ; Lava tubes ; Lava ; water interaction ; Lava delta ; Bench collapse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Pyroclastic cones along the southwest coast of Mauna Loa volcano, Hawai`i, have a common structure: (a) an early formed circular outer rim 200–400 m in diameter composed mostly of scoria and lapilli, and (b) one or more later-formed inner rims composed almost exclusively of dense spatter. The spatter activity locally fed short lava flows that ponded within the outer rims. Based on various lines of evidence, these cones are littoral in origin: relationships between the cones and associated flows; the degassed nature of the pyroclasts; and (although not unequivocal) the position of the cones relative to known eruptive vent locations on Mauna Loa. Additional support for the littoral interpretation comes from their similarity to (smaller) littoral cones that have been observed forming during the ongoing Ki¯lauea eruption. The structure of these Mauna Loa cones, however, contrasts with that of "standard" Hawaiian littoral cones in that there is (or once was) a complete circle of pyroclastic deposits. Furthermore, they are large even though associated with tube-fed pāhoehoe flows instead of `a`ā. The following origin is proposed: An initial flow of tube-fed pāhoehoe into the ocean built a lava delta with a base of hyaloclastite. Collapse of an inland portion of the active tube into the underlying wet hyaloclastites or a water-filled void allowed sufficient mixing of water and liquid lava to generate strong explosions. These explosions broke through the top of the flow and built up the outer scoria/lapilli rims on the solid carapace of the lava delta. Eventually, the supply of water diminished, the explosions declined in intensity to spattering, and the initial rim was filled with spatter and lava.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...