Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4986
    Keywords: Lewis negative ; Lewis antigens ; secretor ; plasma ; H type 1 ; mass spectrometry ; nuclear magnetic resonance spectroscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Total non-acid glycosphingolipids were isolated from the plasma of a healthy red blood cell group O Le(a-b-) salivary ABH secretor individual. Glycolipids were fractionated by HPLC and combined into eight fractions based on chromatographic and immunoreactive properties. These glycolipid fractions were analysed by thin-layer chromatography and tested for Lewis activity with antibodies reactive to the type 1 precursor (Lec), H type 1 (Led), Lea and Leb epitopes. Fractions were structurally characterized by mass spectrometry (EI-MS and LSIMS) and proton NMR spectroscopy. Expected blood group glycolipids, such as H type 1, (Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ1-1Cer) were immunochemically and structurally identified. Inconsistent with the red cell phenotype and for the first time, small quantities of Leb blood group glycolipids (Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1-4Glcβ1-1Cer) were immunochemically and structurally identified in the plasma of a Lewis-negative individual. These findings confirm recent immunological evidence suggesting the production of small amounts of Lewis antigens by Lewis negative individuals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4986
    Keywords: Lewis antigens ; glycolipids ; Le(a+b+) plasma ; secretor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Red cell Lewis antigens are carried by glycosphingolipids passively absorbed from plasma. Plasma was collected from a spectrum of individuals with normal and unusual Lewis/secretor phenotypes in order to investigate the glycolipid basis for the unusual phenotypes. Samples were obtained from: a Le(a+b−) ABH nonsecretor who secreted Lewis substances; a Le(a+b−) partial secretor; Le(a+b+) partial secretors; Le(a+b+) secretors; and a full range of normal Lewis/secretor phenotypes as controls. The Le(a+b+) samples represented Polynesian, Asian and Réunion Island ethnic backgrounds. Nonacid glycolipids were prepared, separated by thin-layer chromatography, and then immunostained with potent monoclonal antibodies of known specificity. Despite different serological profiles of the Le(a+b−) and Le(a+b+) Polynesian samples, their plasma glycolipid expressions were very similar, with both Lea and Leb co-expressed. The copresence of Lea and Leb in Le(a+b+) samples is in marked contrast to Caucasians with normal Lewis phenotypes, who have predominantly either Lea or Leb. These results suggest that there is a range of the secretor transferases in different individuals, possibly due to different penetrance or to several weak variants. We also show that Lewis epitopes on longer and/or more complex core chains appear to be predominant in the Polynesian Le(a+b+) samples. The formation of these extended glycolipids is compatible with the concept that in the presence of reduced secretor fucosyltransferase activity, increased elongation of the precursor chain occurs, which supports the postulate that fucosylation of the precursor prevents or at least markedly reduces chain elongation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4986
    Keywords: Lewis antigens ; glycolipids ; Le(a+b+) ; Le(a−b−) nonsecretor ; small intestine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Histological samples and total non-acid glycosphingolipids were prepared from small intestine of human cadavers with the Le(a+b+) and Le(a−b−) nonsecretor phenotypes and contrasted with the more common Lewis phenotypes. Glycolipid fractions were analysed by thin-layer chromatography and tested for Lewis activity with monoclonal antibodies reactive to Lewis epitopes. Paraffin-embedded small intestine sections were also fluorescently immunostained with anti-Lewis antibodies. Unlike the common Lewis positive phenotypes, we were immunochemically able to demonstrate the copresence of large amounts of Lea and Leb glycolipids in the Le(a+b+) sample. In addition we demonstrated increased formation of extended Lewis structures in this phenotype. By immunohistochemistry Lea, Leb and type 1 precursor chain epitopes could be demonstrated in the brush border. These results show that the expression of the Le(a+b+) phenotype at the erythrocyte phenotyping level parallels the small intestinal expression of this phenotype, and the patterns of Lewis antigen expressions are unique to this phenotype. By immunohistochemistry and immunochemistry we also demonstrated the presence of trace amounts of Lewis active glycoconjugates in the small intestine of the Le(a−b−) nonsecretor and Le(a+b−) samples. In the Le(a−b−) nonsecretor Lea and Leb activity was absent and type 1 precursor was present in brush border, while Leb activity was immunohistologically demonstrated in the Golgi apparatus of the deep glands. Trace amounts of both Lea and Leb glycolipids were identified in this sample. In parallel trace Leb activity could also be detected in the glycolipids of the Le(a+b−) sample and could be immunohistologically demonstrated to be fully expressed in occasional cells in the deep glands of the small intestine, a pattern quite dissimilar to that of the Le(a−b−) nonsecretor. The results in this paper show that the expression of Lewis glycoconjugates in the small intestine parallel the expression of Lewis erythrocyte phenotypes. However, inappropriate Lewis activity is also seen in individuals of other phenotypes and the mechanisms by which these Lewis antigens are made appears to be different for different phenotypes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...