Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • Defibrillation  (1)
  • Life and Medical Sciences  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 25 (1987), S. 241-249 
    ISSN: 1741-0444
    Keywords: Analysis ; Autocorrelation ; Defibrillation ; Performance ; Regression ; Signal ; Ventricular fibrillation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The paper investigates quantitative differences in the signal characteristics of ventricular fibrillation (VF) and other cardiac arrhythmias. The analysis procedure comprises two steps: calculation of a short-term autocorrelation function (ACF) followed by a regression test on a plot of peak magnitudes of the ACF against lag values (the ACF/lag plot). We detect VF by testing the hypothesis that the ACF/lag plot of VF does not pass a linear regression test. Analysis of 31 separate episodes (of VF and other ventricular arrhythmias), each comprising three successive segments of 1·5s each produced the following results: (1) 100 per cent sensitivity (Se), 62 per cent specificity (Sp) and 74 per cent test efficiency (TE) after analysis of the first segment; (2) 100 per cent Se, 86 per cent Sp and 90 per cent TE after the second segment; and (3) 100 per cent Se, 100 per cent Sp and 100 per cent TE after the third segment. This method quantifies the notion that VF signals are nonperiodic with a random amplitude distribution, whereas ventricular tachycardia (VT) signals are usually periodic with more uniform amplitude distributions. Accurate discrimination and identification of VF can be very important in intensive-care settings, as well as in the design of automatic cardioverters and defibrillators.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 138 (1989), S. 338-348 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We report here the effects of growth conditions and myogenic differentiation on rat myoblast hexose transport activities. We have previously shown that in undifferentiated myoblasts the preferred substrates for the high (HAHT)- and low (LAHT)-affinity hexose transport systems are 2-deoxyglucose (2-DG) and 3-O-methyl-D-glucose (3-OMG), respectively. The present study shows that at cell density higher than 4.4 × 104 cells/cm2, the activities of both transport processes decrease with increasing cell densities of the undifferentiated myoblasts. Since the transport affinities are not altered, the observed decrease is compatible with the notion that the number of functional hexose transporters may be decreased in the plasma membrane. Myogenic differentiation is found to alter the 2-DG, but not the 3-OMG, transport affinity. The Km values of 2-DG uptake are elevated upon the onset of fusion and are directly proportional to the extent of fusion. This relationship between myogenesis and hexose transport is further explored by using cultures impaired in myogenesis. Treatment of cells with 5-bromo-2′-deoxyuridine abolishes not only myogenesis but also the myogenesis-induced change in 2-DG transport affinity. Similarly, alteration in 2-DG transport affinity cannot be observed in a myogenesis-defective mutant, D1. However, under myogenesis-permissive condition, the myogenesis of this mutant is also accompanied by changes in its 2-DG transport affinity. The myotube 2-DG transport system also differs from its myoblast counterpart in its response to sulfhydryl reagents and in its turnover rate. It may be surmised from the above observations that myogenesis results in the alteration of the turnover rate or in the modification of the 2-DG transport system. Although glucose starvation has no effect on myogenesis, it is found to alter the substrate specificity and transport capacity of HAHT. In conclusion, the present study shows that hexose transport in rat myoblasts is very sensitive to the growth conditions and the stages of differentiation of the cultures. This may explain why different hexose transport properties have been observed with myoblasts grown under different conditions.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...